Vapor-Phase Axial Deposition Synthesis of SiO2 and SiO2-TiO2 Sponge-Shaped Nanostructures

Article Preview

Abstract:

Amorphous silica can be synthesized with controlled dimensions and morphologies by the Vapor-phase Axial Deposition (VAD) method, so we performed an exploratory study for verifying the possibility of using this technique for the obtention of a sponge-shaped ramified nanostructure with high superficial area. We were successful in synthesizing SiO2 and SiO2-TiO2 with this desired morphology and characterized the materials by Scanning Electron Microscopy and X-Ray Diffraction. The obtained ceramics present pores of adequate dimensions for the use as microfiltration devices and proved to be capable of adsorbing important commercial dyes. These materials show physical characteristics that make them promising for applications on liquid and gas separations, and as very selective photocatalysts for chemical reactions and for waste and water treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

June 2020

Export:

Price:

* - Corresponding Author

[1] S. Kobayashi, H. Nakagome, N. S. Mizu, H. Tsuchiya, and H. Izawa, Electron. Lett., vol.10 (1974), p.410.

Google Scholar

[2] T. Izawa, IEEE J. Sel. Topics Quantum Electron., vol.6 (2000), p.1220.

Google Scholar

[3] M. C. P. Soares, B. F. Mendes, E. A. Schenkel, M. F. M. Santos, E. Fujiwara, and C. K. Suzuki, Mat. Res., vol.21 (2018), p.e20180131.

Google Scholar

[4] M. Kanezashi, T. Shioda, T. Gunji, and T. Tsuru, AIChE J., vol.58 (2011), p.1733.

Google Scholar

[5] M. T. M. Pendergast and E. M. V. Hoek, Energy Environ. Sci., vol.4 (2011), p.(1946).

Google Scholar

[6] F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A. A. Nazeer, M. O. Amin, and M. Madkour, Sci. Rep., vol.8 (2018), p.7104.

DOI: 10.1038/s41598-018-25673-5

Google Scholar

[7] M. Z. Norul Azlin and M. Z. Siti Zuraifah. IJMMM, vol.1 (2013), p.107.

Google Scholar

[8] F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A. J. Stevenson, and S. Deville, Nature Mater., vol.16 (2017), p.1271.

DOI: 10.1038/nmat4982

Google Scholar

[9] Z. Song, Y. Huang, W. L. Xu, L. Wang, Y. Bao, S. Li, and M. Yu, Sci. Rep., vol.5 (2015), p.13981.

Google Scholar

[10] B. F. Jirjis and S. Luque. In: Z. F. Cui and H. S. Muralidhara, Membrane Technology,, IChemE, Elsevier, (2010).

Google Scholar

[11] J. P. Ball, B. A. Mound, J. C. Nino, and J. B. Allen, J. Biomed. Mater. Res. Part A, vol.102A (2014), p.(2089).

Google Scholar

[12] T. Ohno, K. Sarukawa, K. Tokieda, and M. Matsumura, J. Catalysis, vol.203 (2001), p.82.

Google Scholar

[13] L. Raimer, Scannig Electron Microscopy. Physics of Image Formation and Microanalysis,. Second Edition. Springer, (1998).

Google Scholar

[14] M. C. P. Soares, B. F. Mendes, M. K. Gomes, R. A. Bataglioli, E. A. Schenkel, F. F. Vit, L.G.de la Torre, E. Fujiwara, and C. K. Suzuki, IEEE Proc.: SBFoton IOPC, (2018).

DOI: 10.1109/sbfoton-iopc.2018.8610912

Google Scholar