Manganese Sinter Production with Wood Biomass Application

Article Preview

Abstract:

A large amount of finely dispersed manganese ore left after benefication operations or blown out from the furnaces is unsuitable for direct use in electric furnaces and blast furnaces, therefore it is necessary to granulate it in order to have the efficient use of its fine ore particles in metallurgy. To make our research more of practical use, we found it is reasonable not only work over manganese fines sintering but also to attempt mitigating the negative effect on the environment produced by the further sintering and apply the biofuel within the total fuel mass. Under laboratory conditions, the studies have been carried out with the objective to obtain manganese sinter, in which wood biomass is applied, namely initial and pre-pyrolyzed, at temperatures of 673, 873, 1073 and 1273 K. The amount of biofuel in the sinter blend was 25 wt.%. It has been established that the biomass use causes the decrease in the specific capacity of the sintering plant. However, for the efficient manganese ores sintering process, the biofuel of high pyrolysis temperature of 1273 K is required. To achieve the specific capacity and the yield to be as high as those when coke breeze is only used, the amount of the biofuel for manganese ore sintering should be less than 25 wt.% of the solid fuel. Additionally, it has been revealed that the further increase in the biofuel ratio in the total fuel amount is possible on condition that its reactivity is decreased, or larger particles of the biofuel are used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-134

Citation:

Online since:

May 2020

Export:

Price:

* - Corresponding Author

[1] Semanová, Z. & Legemza, J. (2014). Analysis and use of Mn ore fines. Acta Metallurgica Slovaca, 20(4), 410-417. https://doi.org/10.12776/ams.v20i4.435.

DOI: 10.12776/ams.v20i4.435

Google Scholar

[2] Chakraborty, S. (2014). Ferrous metallurgical process industry. Treatise on process metallurgy, 1341-1374. https://doi.org/10.1016/b978-0-08-096988-6.09982-x.

DOI: 10.1016/b978-0-08-096988-6.09982-x

Google Scholar

[3] Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24-38. https://doi.org/10.33271/mining13.01.024.

DOI: 10.33271/mining13.01.024

Google Scholar

[4] Malanchuk, Z.R. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6). Article in press.

DOI: 10.29202/nvngu/2019-6/2

Google Scholar

[5] Yanga, Y., Raipala, K. & Holappa, L. (2014). Ironmaking. In: Treatise on process metallurgy: industrial processes, S. Seetharaman (Ed.), Elsiever:United Kingdom, 2-88. https://doi.org/10.1016/B978-0-08-096988-6.00017-1.

DOI: 10.1016/b978-0-08-096988-6.00017-1

Google Scholar

[6] Sane, R. (2018). Beneficiation and agglomeration of manganese ore fines (an area so important and yet so ignored). IOP Conf. Series: Materials Science and Engineering, 285, 012033. https://doi.org/10.1088/1757-899X/285/1/012033.

DOI: 10.1088/1757-899x/285/1/012033

Google Scholar

[7] Tangstad, M. (2013). Manganese ferroalloys technology. In: Handbook of ferroalloys, M. Gasik (Ed.), Elsiever:United Kingdom, 221-266. https://doi.org/10.1016/B978-0-08-097753-9.00007-1.

DOI: 10.1016/b978-0-08-097753-9.00007-1

Google Scholar

[8] Umadevi, T., Deodhar, A.V., Kumar, S., Prasad, C.S. & Ranjan M. (2008). Influence of coke breeze particle size on quality of sinter. Ironmaking & Steelmaking, 35(8), 567-574. https://doi.org/10.1179/174328108X284598.

DOI: 10.1179/174328108x284598

Google Scholar

[9] Lu, L., Ooi, T.C. & Li, X. (2015). Sintering emissions and their mitigation technologies. In: Iron Ore: Mineralogy, processing and environmental sustainability, L.Lu (Ed.), Elsiever:United Kingdom, 551-579. https://doi.org/10.1016/B978-1-78242-156-6.00018-6.

DOI: 10.1016/b978-1-78242-156-6.00018-6

Google Scholar

[10] Wiklund, C.-M. (2016). Optimization of a steel plant utilizing converted biomass. Doctor of Technologies Thesis. Turku/Abo, Finland, 67 p.

Google Scholar

[11] Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.

DOI: 10.1201/b19901-6

Google Scholar

[12] Fuchigami, Y., Hara, K., Kita, T., Uwasu, M. & Kurimoto, S. (2016). Analysis of effect on CO2 emission reduction and cost estimation for the use of Bio-coke: a case study of Osaka, Japan. Journal of Wood Science, (62), 93-100. https://doi.org/10.1007/s10086-015-1515-6.

DOI: 10.1007/s10086-015-1515-6

Google Scholar

[13] Matsumura T., Ichida, M., Nagasaka, T. & Kato, K. (2008). Carbonization behavior of woody biomass and resulting metallurgical coke properties. ISIJ International, (48), 572-577. https://doi.org/10.2355/isijinternational.48.572.

DOI: 10.2355/isijinternational.48.572

Google Scholar

[14] Mousa, E., Wang, C., Riesbeck, J. & Larsson, M. (2016). Biomass applications in iron and steel industry: An overview of challenges and opportunities. Renewable and Sustainable Energy Review, (65), 1247-1266. https://doi.org/10.1016/j.rser.2016.07.061.

DOI: 10.1016/j.rser.2016.07.061

Google Scholar

[15] Suopajarvi, H., Kemppainen, A., Haapakangas, J. & Fabritius T. (2017). Extensive review of the opportunities to use biomass-based fuels in iron and steelmaking processes. Journal of Cleaner Production, (148), 709-734. https://doi.org/10.1016/j.jclepro.2017.02.029.

DOI: 10.1016/j.jclepro.2017.02.029

Google Scholar

[16] Usui, T., Konishi, H., Ichikawa, K., Ono, H., Kawabata, H., Pena, F.B., Souza, M.H., Xavier, A.A. & Assis P.S. (2018). Evaluation of carbonisation gas from coal and woody biomass and reduction rate of carbon composite pellets. Advances in Materials Science and Engineering, (2018), 14. https://doi.org/10.1155/2018/3807609.

DOI: 10.1155/2018/3807609

Google Scholar

[17] Hesham, M. Ahmed. (2018). New trends in the application of carbon-bearing materials in blast furnace iron-making. Minerals, 8(12), 561. https://doi.org/10.3390/min8120561.

DOI: 10.3390/min8120561

Google Scholar

[18] Suopajarvi, H., Umeki, K., Mousa, E., Hedayati, A., Romar, H., Kemppainen, A., Wang, C., Phounglamcheik, A., Tuomikoski, S., Norberg, N., Andefors, A., Ohman, M., Lassi, U. & Fabritius, T. (2018). Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies. Applied Energy, (213), 384-407. https://doi.org/10.1016/j.apenergy.2018.01.060.

DOI: 10.1016/j.apenergy.2018.01.060

Google Scholar

[19] Ye, L., Peng, Z., Wang, L. et al. (2019). Use of biochar for sustainable ferrous metallurgy. JOM, (71), 3931. https://doi.org/10.1007/s11837-019-03766-4.

Google Scholar

[20] Kawaguchi, T. & Hara, M. (2013). Utilization of biomass for iron ore sintering. ISIJ International, (53), 1599-1606. https://doi.org/10.2355/isijinternational.53.1599.

DOI: 10.2355/isijinternational.53.1599

Google Scholar

[21] Jha, G. & Soren, S. (2017). Study on applicability of biomass in iron ore sintering process. Renewable and Sustainable Energy Reviews, 80, 399-407. https://doi.org/10.1016/j.rser.2017.05.246.

DOI: 10.1016/j.rser.2017.05.246

Google Scholar

[22] Mousa, E., Babich, A. & Senk, D. (2015). Iron ore sintering process with biomass utilization. In: Proceedings of the METEC & 2nd ESTAT, Düsseldorf, Germany.

Google Scholar

[23] El-Hussiny, N.A., Khalifa, A.A., El-Midany, A.A., Ahmed., A.A. & Shalabi, M.E.H. (2015). The effect of replacing coke breeze by charcoal on the technical operation of iron ore sintering. International Journal of Scientific & Engineering Research, 6(2), 681-686.

Google Scholar

[24] Mašlejová, A. (2013). Utilization of biomass in ironmaking, METAL, 15-17.

Google Scholar

[25] Majercak, S. & Karan, T. (1998). Theory of sintering fine materials. Kosice, 343.

Google Scholar

[26] Zhang, Y., Luo, W., Su, Z., Li, G. & Jiang, T. (2013). Optimizing the sintering process of low-grade ferromanganese ores. In: 4th International Symposium on High-Temperature Metallurgical Processing. Annual Meeting and Exhibition San Antonio, Texas (USA), 527-534. https://doi.org/10.1002/9781118663448.ch64.

DOI: 10.1002/9781118663448.ch64

Google Scholar

[27] Dmitriev, A.N., Solomakhin, A.V., Kashin, V.V. & Verushkin, V.V. (2003). Making sinter from concentrate of low-grade manganese ore for use in the production of ferrosilicomanganese. Metallurgist, 47(3-4), 99-103. https://doi.org/10.1023/A:1024982325310.

DOI: 10.1023/a:1024982325310

Google Scholar

[28] Sun, Y., Hao, J., Yang, S., & Lv, Q. (2011). Discussion on sintering technological parameter of manganese ore. Chinese Manganese Industry, 29(1), 24-26.

Google Scholar

[29] Ding, Y., Chen, X., & Wang, X. (2004). Sintering process experiment in Yunnan Jianshui manganese mine. Yunnan Metallurgy, 33(1), 18-22. (in Chinese).

Google Scholar

[30] Kieush, L., Yaholnyk, M., Boyko, M., Koveria, A. & Ihnatenko, V. (2019). Study of biomass utilization in the iron ore sintering. Acta Metallurgica Slovaca, 25 (1), 55-64. https://doi.org/10.12776/ams.v1i1.1225.

DOI: 10.36547/ams.25.1.8

Google Scholar

[31] Kieush, L., Boyko, M., Koveria, A., Khudyakov, O. & Ruban, A. (2019). Utilization of the prepyrolyzed technical hydrolysis lignin as a fuel for iron ore sintering. Eastern-European Journal of Enterprise Technologies, 1/6 (97), 84-89. https://doi.org/10.15587/1729-4061.2019.154082.

DOI: 10.15587/1729-4061.2019.154082

Google Scholar

[32] Revin, V., Novokuptsev, N. & Kadimaliev, D. (2016). Preparation of biocomposites using sawdust and lignosulfonate with a culturе liquid of Levan Producer Azotobacter vinelandii as a bonding agent. BioResources, 11(2), 3244-3258. https://doi.org/10.15376/biores.11.2.3244-3258.

DOI: 10.15376/biores.11.2.3244-3258

Google Scholar

[33] Li, H., Deng, Y., Liang, J. & Dai Y. (2016). Direct preparation of hollow nanospheres with kraft lignin: a facile strategy for effective utilization of biomass waste. BioResources, 11(2), 3073-3083. https://doi.org/10.15376/biores.11.2.3073-3083.

DOI: 10.15376/biores.11.2.3073-3083

Google Scholar

[34] Gan, M., Fan, X., Chen, X., Ji, Z., Lv, W., Wang, Y. & Jiang, T. (2012). Reduction of pollutant emission in iron ore sintering process by applying biomass fuels. ISIJ international, 52(9), 1574-1578. https://doi.org/10.2355/isijinternational.52.1574.

DOI: 10.2355/isijinternational.52.1574

Google Scholar