Modification of Electronic Structures with Lithium Intercalation in LixMn2O4 (x = 0 and 1) Studied by CRYSTAL14 Calculation Code

Article Preview

Abstract:

In this study, we calculate electronic structures for Mn2O4 and LiMn2O4 by using CRYSTAL14 ab-initio calculation code in order to understand electrode reaction mechanism of LixMn2O4 by lithiation/delithiation. Mulliken population analysis for all electrons show that the redox orbitals with lithiation and delithiation is O 2p orbitals. However, difference charge densities between majority and minority electrons indicate the change of distribution in Mn 3d orbitals by lithiation. This modification of distribution in Mn 3d orbitals suggests the change of electron configuration because the number of electrons at Mn atom is almost constant in Mulliken population analysis for all electrons. As a result, this modification of distribution in Mn 3d orbitals improves electron conductivity of this material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-19

Citation:

Online since:

November 2018

Export:

Price:

* - Corresponding Author

[1] H. Berg, K. Göransson, B. Noläng and O. Thomas, J. Mater. Chem., 9, 2813 (1999).

Google Scholar

[2] G. E. Grechnev, R. Ahuja, B. Johansson and O. Eriksson, Phys. Rev. B65, 174408 (2002).

Google Scholar

[3] Y. Liu, T. Fujiwara, H. Yukawa and M. Morinaga, Solid State Ionics, 126, 209 (1999).

Google Scholar

[4] M. K. Aydinol and G. Ceder, J. Electrochem. Soc., 144, 3832 (1997).

Google Scholar

[5] K. Suzuki, B. Barbiellini, Y. Orikasa, N. Go, H. Sakurai, S. Kaprzyk, M. Itou, K. Yamamoto, Y. Uchimoto, Y. J. Wang, H. Hafiz, A. Bansil, and Y. Sakurai, Phys. Rev. Lett., 114, 087401 (2015).

DOI: 10.1103/physrevlett.114.087401

Google Scholar

[6] B. Barbiellini, K. Suzuki, Y. Orikasa, S. Kaprzyk, M. Itou, K. Yamamoto, Y. J. Wang, H. Hafiz, R. Yamada, Y. Uchimoto, A. Bnasil, Y. Sakurai and H. Sakurai, Appl. Phys. Lett., 109, 073102 (2016).

DOI: 10.1063/1.4961055

Google Scholar

[7] H. Hafiz, K. Suzuki, B. Barbiellini, Y. Orikasa, V. Callewaert, S. Kaprzyk, M. Itou, K. Yamamoto, R. Yamada, Y. Uchimoto, Y. Sakurai, H. Sakurai and A. Bansil, Sci. Adv., 3, e1700971 (2017).

DOI: 10.1126/sciadv.1700971

Google Scholar

[8] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone. M. De. LaPierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat, B. Kirtman: Int. J. Quantum Chem. Vol. 114, 1287 (2014).

DOI: 10.1002/qua.24658

Google Scholar

[9] R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D'Arco, M. Llunell, M. Causa, and Y. Noel: CRYSTAL14 User's Manual (University of Torino, Torino, 2014).

Google Scholar

[10] A. Erba, M. Itou, Y. Sakurai, R. Yamaki, M. Ito, S. Casassa, L. Maschio, A. Terentjevs and C. Pisani, Phys. Rev. B 83, 125208 (2011).

DOI: 10.1103/physrevb.83.125208

Google Scholar

[11] ICDD-JCPDS card 38-299.

Google Scholar

[12] R. Dovesi, C. Roetti, C. Freyria-Fava, M. Prencipe and V. R. Saunders, Chem. Phys., 156, 11 (1991).

DOI: 10.1016/0301-0104(91)87032-q

Google Scholar

[13] M. D. Towler, N. L. Allan, N. M. Harrison, V. R. Saunders, W. C. Mackrodt, E. Aprà, Phys. Rev. B50, 5041 (1994).

Google Scholar

[14] M. Miasek, J. Math. Phys., 7, 139 (1966).

Google Scholar