Characterization of Laser Beam Welded Al0.5CoCrFeNi High-Entropy Alloy

Article Preview

Abstract:

High-entropy alloys (HEA), a new generation alloy system offer superior mechanical properties with solid solution strengthening. AlxCoCrFeNi-HEA is one such system being received more attention because of its specific yield strength and ductility. In the present work, Al0.5CoCrFeNi-HEA was prepared by vacuum arc melting. The laser beam welding (LBW) was carried out on 1mm thick forged and homogenized HEA, with a beam power of 1.5 kW and at a traverse speed of 600 mm/min. The microstructural features of different regions of the weld were studied using scanning electron microscopy. The homogenized Al0.5CoCrFeNi-HEA have shown equiaxed grains of average size 60 μm. The weld metal showed a typical weld fusion zone microstructure with dendritic structure with a reduction in BCC phase due to minimal Al and Ni segregation ratio at interdendrites. Micro-chemical analysis with energy dispersive spectroscopy confirmed that there was no major segregation of elements in the weld fusion zone. The microhardness survey performed across the weld evidenced a reduction in hardness, as a consequence of significant reduction in Al-Ni rich hardening factor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-453

Citation:

Online since:

August 2018

Export:

Price:

* - Corresponding Author

[1] Michael C.Gao, Jien-Wei Yeh, Peter K.Liaw, Yong Zhang, High-Entropy Alloys – Fundamentals and Applications, first ed., Springer International Publishing, Switzerland (2016).

Google Scholar

[2] Zhi Tang, Lu Huang, Wei He and Peter K. Liaw, Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys, Entropy 16(2014), 895-911.

DOI: 10.3390/e16020895

Google Scholar

[3] Ka Ram Lim, Kwang Seok Lee, Jun Seo Lee, Jin Yeon Kim, Hye Jung Chang, Young Sang Na, Dual-phase high-entropy alloys for high-temperature structural applications, Journal of Alloys and Compounds 728(2017), 1235-1238.

DOI: 10.1016/j.jallcom.2017.09.089

Google Scholar

[4] Dong Yue Li, Yong Zhang, The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures, Intermetallics, 70(2016), 24-28.

DOI: 10.1016/j.intermet.2015.11.002

Google Scholar

[5] S.Q. Xia, X. Yang, T.F. Yang, S. Liu, Y. Zhang, Irradiation Resistance in AlxCoCrFeNi High Entropy Alloys, JOM 67(2015), 2340-2344.

DOI: 10.1007/s11837-015-1568-4

Google Scholar

[6] C. Li, J.C. Li, M. Zhao, Q. Jiang, Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys, J. Alloys Compd., 504(2010) 515–518.

DOI: 10.1016/j.jallcom.2010.03.111

Google Scholar

[7] Yih-Farn Kao, Ting-Jie Chen, Swe-Kai Chen, Jien-Wei Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, J. Alloys Compd., 488(2009) 57–64.

DOI: 10.1016/j.jallcom.2009.08.090

Google Scholar

[8] Woei-Ren Wang, Wei-Lin Wang, Shang-Chin Wang, Yi-Chia Tsai, Chun-Hui Lai and Jien-Wei Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high entropy alloys, Intermetallics26(2012) 44-51.

DOI: 10.1016/j.intermet.2012.03.005

Google Scholar

[9] Yih Farn Kao, Tsung Dar Lee, Swe–Kai Chen, Yee Shyi Chang, Electrochemical passive properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corros. Sci., 52 (2010) 1026–1034.

DOI: 10.1016/j.corsci.2009.11.028

Google Scholar

[10] Yi-xuan LIU, Cong-qian CHENG, Jian-lu SHANG, Rui WANG, Peng LI, Jie ZHAO, Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x=0.15, 0.4) in supercritical water and comparison with HR3C steel, Trans. Nonferrous Met. Soc. China 25(2015).

DOI: 10.1016/s1003-6326(15)63733-5

Google Scholar

[11] Z. M. Jiao, M. Y. Chu, H. J. Yang, Z. H. Wang, J. W. Qiao, Nanoindentation characterised plastic deformation of a Al0.5CoCrFeNi high entropy alloy, Mater. Sci. Technol. 31(2015), 1244-1249.

DOI: 10.1179/1743284715y.0000000048

Google Scholar

[12] Sizhe Niu, Hongchao Kou, Tong Guo, Yu Zhang, Jun Wang, Jinshan Li, Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy, Mater. Sci. Eng., A, 671 (2016) 82–86.

DOI: 10.1016/j.msea.2016.06.040

Google Scholar

[13] Chun Ming Lin, Hsien-Lung Tsai, Evolution of microstructure, hardness and corrosion properties of high entropy Al0.5CoCrFeNi alloy, Intermetallics, 19 (2011), 288-294.

DOI: 10.1016/j.intermet.2010.10.008

Google Scholar

[14] R.Sokkalingam, Sourav Mishra, Srinivasa Rakesh Cheethirala, V. Muthupandi, K. Sivaprasad, Enhanced Relative Slip Distance in Gas-Tungsten-Arc-Welded Al0.5CoCrFeNi High-Entropy Alloy, Metall and Mat Trans A 48(2017), 3630-3634.

DOI: 10.1007/s11661-017-4140-8

Google Scholar

[15] L. Cui, B. Ma, S. Q. Feng, X. L. Wang, Microstructure and Mechanical Properties of High-Entropy Alloys CoCrFeNiAl by Welding, Advanced Materials Research. 936 (2014), 1635-1640.

DOI: 10.4028/www.scientific.net/amr.936.1635

Google Scholar

[16] M. Nahmany, Z. Hooper, A. Stern, V. Geanta, I. Voiculescu, AlxCrFeCoNi High-Entropy Alloys: Surface Modification by Electron Beam Bead-on-Plate Melting, Metallogr. Microstruct. Anal. 5(2016), 229–240.

DOI: 10.1007/s13632-016-0276-y

Google Scholar

[17] Z.Wu, S.A. David, Z.Feng, H.Bei, Weldability of high entropy CrMnFeCoNi alloy, Scripta Mater. 124(2016), 81-85.

DOI: 10.1016/j.scriptamat.2016.06.046

Google Scholar

[18] Fidel Zapirain, Fidel Zubiri, Fermin Garciandia, Itziar Tolosa, Samuel Chueca, Aimar Goiria, Development of Laser Welding of Ni based Superalloys for Aeronautic Engine Applications (Experimental Process and Obtained Properties), Physics Procedia 12(2011).

DOI: 10.1016/j.phpro.2011.03.014

Google Scholar

[19] Zhi Tang, Lu Huang, Wei He and Peter K. Liaw, Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys, Entropy 16(2014), 895-911.

DOI: 10.3390/e16020895

Google Scholar

[20] Zhiling Tian, Yun Peng, Welding of Ultra-fine Grained Steels, in: Yuqing Weng, Ultra-fine Grained Steels, Springer, Berlin, Heidelberg, (2009).

DOI: 10.1007/978-3-540-77230-9_10

Google Scholar