SnO2 Nanoparticles for Lithium-Ion Batteries Prepared by Sol-Gel Method

Article Preview

Abstract:

Nanostructured SnO2 is an attractive anode material for high-energy-density lithium-ion batteries because of the fourfold higher theoretical charge capacity than commercially used graphite. However, the poor capacity retention at high rates and long-term cycling have intrinsically limited applications of nanostructured SnO2 anodes due to large polarization and ~300% volume change upon lithium insertion/extraction. Here we report the design of SnO2 nanoparticles, which are synthesized by sol-gel method, with an aim at overcome the above problems for the high-performance reversible lithium storage. The results showed that the mean sizes of SnO2 particles treated with 6 wt.% ammonia were less than 30 nm, which can store charge with a capacity density as high as ~1888 mAh/g. Even when the discharge rate was increased to 0.5 C, it still retained ~1017 mAh/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

718-725

Citation:

Online since:

January 2017

Export:

Price:

* - Corresponding Author

[1] C. Lu, M.H. Yuan: Journal of University of Shanghai for Science and Technology, Vol. 35 (2015) No. 2, p.165. (In Chinese).

Google Scholar

[2] N.H. Li, C.R. Martin and B. Scrosati: Electrochem. Solid-State Lett., Vol. 3 (2000) No. 7, p.316.

Google Scholar

[3] D. Zhou, W.L. Song, X.G. Li and L.Z. Fan: ACS Applied Materials & Interfaces, Vol. 8 (2016) No. 21, p.13410.

Google Scholar

[4] M. Parka, X.C. Zhang, M.D. Chung, G.B. Less and A.M. Sastry: Journal of Power Sources, Vol. 195 (2010) No. 24, p.7904.

Google Scholar

[5] J.W. Choi and D. Aurbach: Nature, Vol. 1 (2016) No. 4, p.16013.

Google Scholar

[6] J. Zhang: The Research of Tin-Based Oxides for Li-Ion Battery Anode (MS. Hunan University, China 2009), p.28.

Google Scholar

[7] S.J. Li: Studies on the Preparation of Nanometer Tin Dioxide Particles (MS. Zhengzhou University, China 2006), p.7. (In Chinese).

Google Scholar

[8] X.B. Han: Electrical Properties of Tin Oxide Composite Thin Films Fabricated by Sol-Gel Method (MS. Northeastern University, China 2006), p.43. (In Chinese).

Google Scholar

[9] L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze and H.Q. Wu: ChemInform, Vol. 37 (2005) No. 7, p.881.

Google Scholar

[10] H.B. Wu, J.S. Chen, X.W. Lou and H.H. Hng: Phys. Chem., Vol. 115 (2011) No. 50, p.24605.

Google Scholar

[11] T. Osaka and Z. Ogumi: Nanoscale Technology for Advanced Lithium Batteries (Springer Publication, London 2014).

Google Scholar

[12] A.D.W. Todd, P.P. Ferguson, M.D. Fleischauer and J.R. Dahn: Int. J. Energy Res, Vol. 34 (2010) No. 6, p.535.

Google Scholar

[13] A.E. Shalan, I. Osama, M.M. Rashad and I. A. Ibrahim: J Mater Sci-Mater Electron, Vol. 25 (2014) No. 1, p.303.

Google Scholar

[14] L.N. Yang: Preparation and Electrochemical Properties of Sn-based as Anode Materials for Lithium Ion Battery (MS. Shandong University of Technology, China 2015), p.21. (In Chinese).

Google Scholar

[15] S.P. Zhao, C. Wang, Z.L. Yang and W. Jiang: Materials Review, Vol. 30 (2016) No. 1, p.136.

Google Scholar

[16] W.L. Fu: Chinese Journal of Power Sources, Vol. 33 (2009) No. 9, p.822. (In Chinese).

Google Scholar

[17] J.P. Liu, Y.Y. Li, X.T. Huang, R.M. Ding, Y.Y. Hu, J. Jiang and L. Liao: J. Mater. Chem., Vol. 19 (2009) No. 13, p.1859.

Google Scholar

[18] S.C. Zhang, Y.L. Xing, T. Jiang, Z.J. Du, F. Li, Lei He and W.B. Liu: Journal of Power Sources, Vol. 196 (2011) No. 16, p.6915.

Google Scholar

[19] S.J. Ding, J.S. Chen, G.G. Qi, X.N. Duan, Z.Y. Wang, E.P. Giannelis, L. A. Archer, and X.W. Lou: J.A.C.S., Vol. 133 (2011) No. 1, p.21.

Google Scholar

[20] R. Yang, Y.G. Gu, Y.Q. Li, J. Zheng, X.G. Li: Acta Materialia, Vol. 58 (2010) No. 3, p.866.

Google Scholar

[21] C. Wang, G.H. Du, Kenny Ståhl, H.X. Huang, Y.J. Zhong and J.Z. Jiang: J. Phys. Chem., Vol. 116 (2012) No. 6, p.4000.

Google Scholar

[22] C. Guan X.H. Wang, Q. Zhang, Z.X. Fan, H. Zhang and H.J. Fan: Nano Lett. Vol. 14 (2014) No. 8, p.4852.

Google Scholar

[23] J.M. Tarascon and M. Armand: Nature, Vol. 414 (2001) No. 6861, p.359.

Google Scholar

[24] C. Hou, X.M. Shi, C.X. Zhao, X.Y. Lang, L.L. Zhao, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li and Q. Jiang: Mater. Chem. A, Vol. 2 (2014) No. 37, p.15519.

Google Scholar

[25] X. Ding, L.H. Huang, M. Ji and L.F. Cui: Nonferrous Metal Materials And Engineering, Vol. 37 (2016) No. 2, p.1. (In Chinese).

Google Scholar

[26] D. Deng: Energy Science and Engineering, Vol. 3 (2015) No. 5, p.385.

Google Scholar

[27] C. Delacourt, P.L. Ridgway, V. Srinivasan and V. Battaglia: Journal of the Electrochemical Society, Vol. 161(2014) No. 9, p. A1253.

Google Scholar

[28] Anh Vu, Y.Q. Qian and Andreas Stein: Advance of Materials, Vol. 2 (2012) No. 9, p.1056.

Google Scholar

[29] C.M. Park, J.H. Kim, H. Kimc and H.J. Sohn: Chem. Soc. Rev., Vol. 39 (2010) No. 8, p.3115.

Google Scholar

[30] X.C. Pang, L.X. Zhang, J. Tan, Z.M. Ye and T.H. Chen: Journal of Guangxi Teachers Education University, Vol. 23 (2006) No. 3, p.26.

Google Scholar

[31] B. Wang, B. Luo, X.L. Li and L. J Zhi: Materials Today, Vol. 15 (2012) No. 12, p.544.

Google Scholar

[32] S.H. Zheng, C.H. He, H.Y. Zhang and L. Hu: Electronic Components and Materials, Vol. 32 (2013) No. 8, p.14.

Google Scholar

[33] S.Y. Lee, K.Y. Park, W.S. Kim, S.M. Yoon, S.H. Hong, K. Kang and MY. Kim: Nano Energy, Vol. 19 (2016) No. 19, p.234.

Google Scholar

[34] Y.P. Wu, C.R. Wan, C.Y. Jiang, J.J. Li, Y.X. Li: Chinese Journal of Power Sources, Vol. 24 (2000) No. 2, p.112. (In Chinese).

Google Scholar