Effect of Mn2+ Additive on the Sinterability and Dielectric Properties of Ba0.55Sr0.4Ca0.05TiO3-MgO Composite Ceramics

Article Preview

Abstract:

Ba0.55Sr0.4Ca0.05TiO3-MgO (BSCTM) with Mn2+ additive composite ceramics were prepared by the conventional solid state method with BaCO3, SrCO3, CaCO3, MgO and MnCO3 as raw materials and B2O3 and Li2CO3 as sintering agent. The influence of the MnCO3 additive on the sinterability and dielectric properties of BSCTM composite ceramics are investigated. The morphologies were analysized by scanning electron microscopy (SEM). The dielectric constant and dielectric loss of ceramics were measured by LCR meter at 1 kHz and 1 MHz. The temperature dependences of dielectric constant were measured by high-low temperature incubator tank and LCR meter at 1 MHz and a temperature range from-55 to 125 °C. The dielectric tunabilities were tested by C-T-V converter and LCR meter at 1 MHz and room temperature (25 °C). SEM results showed that BSCTM ceramics became more compact with the increase of Mn2+ content, because Mn2+ helped to form more oxygen vacancies for accelerating densification process. The addition of Mn2+ largely reduced the dielectric loss while had little effect on dielectric constant. The dielectric constant and dielectric loss of 0.5mol% Mn2+ doped BSCTM ceramics were 222 and 0.001, respectively. The dielectric tunability increased at first and then decreased with the increase of Mn2+ content. The tunability of 0.5mol% Mn2+ doped BSCTM ceramics were 4.04% under a DC electric field of 8.2 kV/cm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

710-713

Citation:

Online since:

March 2014

Export:

Price:

* - Corresponding Author

[1] S. S. Gevorgian, E. L. Kollberg, IEEE Trans. Microwave Theory Tech 49 (2001) 2117-2124.

Google Scholar

[2] A. Ioachim, M.I. Toacsan, M.G. Banciu, et al., Prog. Solid State Chem. 35 (2007) 513-520.

Google Scholar

[3] F.A. Miranda, F.W.V. Keuls, R.R. Romanofsky, et al. Integrated Ferroelectrics 42 (2002) 131-149.

Google Scholar

[4] F. Zimmermann, M. Voigts, C. Weil, et al., J. Eur. Ceram. Soc. 21 (2001) 2019-(2023).

Google Scholar

[5] D. Wang, X. Li, Q. Jia, et al. Int. J. Appl. Ceram. Technol., 10 (2013) E192-E199.

Google Scholar

[6] U. C. Chung, C. Elissalde, M. Maglione, et al., Appl. Phys. Lett., 92(2008) 042902 3pp.

Google Scholar

[7] J.J. Zhang, J. W. Zhai, H. T. Jiang and X. Yao, Ferroelectrics 388 (2009) 74-79.

Google Scholar

[8] P. Liu, J. L. Ma, L. Meng, et al. Mater. Chem. Phys. 114 (2009) 624-628.

Google Scholar

[9] J. J. Zhang, J. W. Zhai, H. T. Jiang and X. Yao, J. Phys. D: Appl. Phys. 41 (2008) 195405 7pp.

Google Scholar

[10] X. H. Wang , W. Z. Lu, J. Liu, et al., J. Eur. Ceram. Soc. 26 (2006) 1981-(1985).

Google Scholar

[11] Q. Xu, X. F. Zhang, Y. H. Huang, et al. J. Alloys Compd. 488 (2009) 448-453.

Google Scholar

[12] M. T. Sebastian and H. Jantunen, Int. Mater. Rev. 53 (2008) 57-90.

Google Scholar

[13] T. Hu, H. Jantunen, A. Unsimäki, S. Leppävuori, Mater. Sci. Semicond. Process. 5 (2003) 215-221.

Google Scholar

[14] J.W. Zhai, X. Yao, X.G. Cheng, et al., Mater. Sci. 37 (2002) 3739-3745.

Google Scholar

[15] S. H. Kim, J. H. Koh, Microelectron. Eng. 87 (2010) 79-82.

Google Scholar

[16] T. Hu, H. Jantunen, A. Deleniv, et al., J. Am. Ceram. Soc. 87 (2004) 578-583.

Google Scholar

[17] C. X. Yang, H. Q. Zhou, M. Liu, T. Qiu, J Mater Sci: Mater Electron 18(2007) 985-989.

Google Scholar

[18] J. D. Cui, G. X. Dong, Z. M. Yang, J. Du, J. Alloys Compd., 490 (2010) 353-357.

Google Scholar

[19] A. Tkach, P. M. Vilarinho and A. L. Kholkin, Appl. Phys. A, 79 (2004) 2013-(2020).

Google Scholar