Nanoindentation-Induced Phase Transformation in Silicon Thin Films

Article Preview

Abstract:

Nanoindentation-induced phase transformation of amorphous, annealed amorphous and microcrystalline hydrogen-free silicon thin films were studied. Series of nanoindentation experiments were performed with a sharp Berkovich indenter at various unloading rates. The structural changes in indentation deformed regions were examined using Raman spectroscopy. Analyses of indentation curves and Raman spectra suggest that high pressure phases appear more easily in annealed amorphous Si thin films than in microcrystalline ones.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-115

Citation:

Online since:

September 2013

Export:

Price:

[1] A. Kailer, Y.G. Gogotsi, K.G. Nickel, Phase transformations of silicon caused by contact loading, J. Appl. Phys. 81 (1997) 3057-3063.

DOI: 10.1063/1.364340

Google Scholar

[2] G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, D.R. Clarke, Electrical resistance of metallic contacts on silicon and germanium during indentation, J. Mater. Res. 7 (4) (1992) 961-972.

DOI: 10.1557/jmr.1992.0961

Google Scholar

[3] I.V. Gridneva, Y.V. Milman, V.I. Trefilov, Phase transition in diamond-structure crystals during hardness measurement, Phys. Status Solidi A9 (1972) 177-182.

DOI: 10.1002/pssa.2210140121

Google Scholar

[4] V. Domnich, Y. Gogotsi, Phase transformation in silicon under contact loading, Rev. Adv. Mater. Sci 3 (2002) 1-36.

Google Scholar

[5] M.C. Gupta, A.L. Ruoff, Static compression of silicon in the.

Google Scholar

[100] and in the.

Google Scholar

[111] directions, J. Appl. Phys. 51 (1980) 1072-1075.

Google Scholar

[6] R.O. Piltz, J.R. Maclean, S.J. Clark, G.J. Ackland, P.D. Hatton, J. Crain, Structure and properties of silicon XII: A complex tetrahedrally bonded phase, Phys. Rev. B52 (1995) 4072-4085.

DOI: 10.1103/physrevb.52.4072

Google Scholar

[7] J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, G.S. Pawley, Reversible pressure-induced structural transitions between metastable phases of silicon, Phys. Rev. B50 (1994) 13043-13046.

DOI: 10.1103/physrevb.50.13043

Google Scholar

[8] Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, K.G. Nickel, Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors, J. Mater. Res. 15 (4) (2000) 871-879.

DOI: 10.1557/jmr.2000.0124

Google Scholar

[9] V. Domnich, Y. Gogotsi, S. Dub, Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon, Appl. Phys. Lett. 76 (2000) 2214-2216.

DOI: 10.1063/1.126300

Google Scholar

[10] S. Ruffell, J.E. Bradby, J.S. Williams, High pressure crystalline phase formation during nanoindentation: Amorphous versus crystalline silicon, Appl. Phys. Lett. 89 (2006) 091919.

DOI: 10.1063/1.2339039

Google Scholar

[11] N.V. Novikov, S.N. Dub, Y.V. Milman, I.V. Gridneva, S.I. Chugunova, Application of nanoindentation method to study a semiconductor-metal phase transformation in silicon, J. Superhard Mater. 18 (1996) 32-40.

Google Scholar