Numerical Modelling and Bearing Capacity of Reinforced Concrete Beams

Article Preview

Abstract:

This paper discusses the fracture-plastic material models for reinforced concrete and use of this model for modelling of reinforced concrete beams. Load-displacement relations and bearing capacity of reinforced concrete beams will be evaluated. A series of original (own) experiments - the beam and data from completed experiments - have been chosen for the numerical modelling. In case of the original experiments - reinforced concrete beams, stochastic modelling based on LHS (Latin Hypercube Sampling) will be carried out in order to estimate the total bearing capacity. The software used for the fracture-plastic model for reinforced concrete is ATENA.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 577-578)

Pages:

281-284

Citation:

Online since:

September 2013

Export:

Price:

[1] CEB - FIP Model Code 1990: Design Code. by Comite Euro-International du Beton, Thomas Telford, 1993. ISBN 978-0727716965.

DOI: 10.1680/ceb-fipmc1990.35430

Google Scholar

[2] W., F. Chen: Plasticity in Reinforced Concrete. Mc. New York: Graw Hill, 1982.

Google Scholar

[3] Computer program ATENA 2D: Theory Manual. Praha: Červenka Consulting, (2000).

Google Scholar

[4] Computer Pragram FReET (Computer Pragram for Statistical, Sensitivity and Probabilistic Analysis): Theory Manual. Brno, 2002.

Google Scholar

[5] J. Červenka, V. K. Papanikolaou: Three dimensional combined fracture-plastic material model for concrete. Int. J. Plasticity, Vol. 24, (2008), no. 12, pp.2192-2220. ISSN 0749-6419.

DOI: 10.1016/j.ijplas.2008.01.004

Google Scholar

[6] ISO 2394 General principles on reliability for structures, ISO, 1998.

Google Scholar

[7] JCSS: Probabilistic model code. JCSS working materiál [online]. 2012 [cit. 2012-01-01]. http://www.jcss.ethz.ch/.

Google Scholar

[8] J. Kralik, Nonlinear probabilistic analysis of the reinforced concrete structure failure of a nuclear power plant considering degradation effects, 3rd International Conference on Applied Mechanics and Mechanical Engineering, ICAMME 2012, Applied Mechanics and Materials, Vol. 249-250, (2013), Pages 1087-1098, ISSN 1660-9336.

DOI: 10.4028/www.scientific.net/AMM.249-250.1087

Google Scholar

[9] M. Krejsa, P. Janas, R. Cajka: Using DOProC method in structural reliability assessment. 2nd International Conference on Mechatronics and Applied Mechanics, ICMAM 2012, Applied Mechanics and Materials, Vol. 300-301, (2013), pp.860-869, ISSN 1660-9336.

DOI: 10.4028/www.scientific.net/AMM.300-301.860

Google Scholar

[10] D. Novák, M. Vořechovský, R. Rusina: Small-sample Probabilistic Assessment - software FREET," ICASP 9, In 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, USA, July 6-9, 2003, pp.91-96 Millpress, Rotterdam. ISBN 90-5966-004-8.

Google Scholar

[11] G. Rombach: Anwendung der Finite-Elemente-Methode im Betonbau. 2. Auflage. Berlin: Ernst & Sohn, (2007). ISBN 978-3-433-01701-2.

DOI: 10.1002/stab.200001630

Google Scholar

[12] O. Sucharda, J. Brozovsky: Approach to the Assessment of Concrete Structures based on Non-Linear Elasto-Plastic Analysis. In Proceedings of the CST2009 Conference, Civil-Comp Press, paper 121, Funchal 2009. ISBN 978-190508830-0.

DOI: 10.4203/ccp.91.121

Google Scholar

[13] O. Sucharda, D. Mikolášek, J. Brožovský: Determination of Concrete Cube Strength from used Samples. Transactions of the VŠB - Technical University of Ostrava, (2012), n. 2, pp.1-9. ISSN 1804-4824.

DOI: 10.2478/v10160-012-0033-3

Google Scholar

[14] P. Suchardová, A. Bernatík, O. Sucharda: Risk analysis of extraordinary accident in industrial company," In Reliability, Risk and Safety – Ale, Papazoglou & Zio (eds) (ESREL 2010), Taylor & Francis Group, London, United Kingdom, 2010, pp.495-501. ISBN 978-0-415-60427-7.

Google Scholar