Cashew Apple Extract: A Novel, Potential Green Reducing Agent for the Synthesis of Reduced Graphene Oxide

Article Preview

Abstract:

Abstract Reduced graphene oxide (rGO) is one of the promising materials which are used in energy storage devices, field effect resistors and as an additive in polymer composites for functional and structural applications. The reduction of graphene oxide (GO) to rGO is popular and attractive. Chemical reduction of GO is considered as one of the promising methods for the large-scale production of rGO. Herein, we report for the first time a sustainable, eco-friendly and facile approach for synthesizing rGO using cashew apple extract as a reducing agent. Reduction of GO by cashew apple extract was confirmed by the bathochromic shift in the UV-Visible spectrum. The extent of reduction by cashew apple extract at temperatures (80°C, 120°C, and 180°C) was determined by making use of X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) and were morphologically confirmed using Transmission Electron Microscopy (TEM). Through this research work, we propose an environment friendly approach for the production of rGO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-70

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] M. Ahmed, N. Kishi, T. Soga, Large scale bi-layer graphene by suppression of nucleation from a solid precursor, RSC Adv. 5 (2015) 42645–42652.

DOI: 10.1039/c5ra02038g

Google Scholar

[2] Y. Zhang, Y. Zhang, X. Li, X. Zhao, C. Anning, J. Crittenden, X. Lyu, Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production, Front. Environ. Sci. Eng. 14 (2020) 1–13.

DOI: 10.1007/s11783-020-1248-7

Google Scholar

[3] M. Ramezanzadeh, B. Ramezanzadeh, M. Sari, M. Saeb, Corrosion resistance of epoxy coating on mild steel through polyamidoamine dendrimer-covalently functionalized graphene oxide nanosheets, J Ind Eng Chem. 82 (2020) 290–302.

DOI: 10.1016/j.jiec.2019.10.025

Google Scholar

[4] F. Xing, L. Guan, Y. Li, C. Jia, Biosynthesis of reduced graphene oxide nanosheets and their in vitro cytotoxicity against cardiac cell lines of Catla catla, Environ. Toxicol. Pharmacol. 48 (2016) 110–115.

DOI: 10.1016/j.etap.2016.09.022

Google Scholar

[5] Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J. Potts, R. Ruoff, Graphene and graphene oxide: Synthesis, properties, and applications, Adv. Mater. 22 (2010) 3906–3924.

DOI: 10.1002/adma.201001068

Google Scholar

[6] J.S. George, K.P. Jibin, V. Prajitha, S. Thomas, Spectroscopic Characterizations of Graphitic Structures, in: Emerging Trends in Spectroscopy, (2019) 1–16.

DOI: 10.1201/9781003338093-2

Google Scholar

[7] S. Kim, J. Kim, K. Kim, Y. Hwangbo, J. Yoon, E. Lee, J. Ryu, H. Lee, S. Cho, S. Lee, Synthesis of CVD-graphene on rapidly heated copper foils, Nanoscale. 6 (2014) 1–7.

DOI: 10.1039/c3nr06434d

Google Scholar

[8] W. Yang, G. Chen, Z. Shi, C.C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, G. Zhang, Epitaxial growth of single-domain graphene on hexagonal boron nitride, Nat. Mater. 12 (2013) 792–797.

DOI: 10.1038/nmat3695

Google Scholar

[9] K. Muthoosamy, S. Manickam, State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives, Ultrason Sonochem. 39 (2017) 478–493.

DOI: 10.1016/j.ultsonch.2017.05.019

Google Scholar

[10] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon. 48 (2010) 255–259.

DOI: 10.1016/j.carbon.2009.09.013

Google Scholar

[11] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications: A review, Crit. Rev. Solid State Mater. Sci. 35 (2010) 52–71.

DOI: 10.1080/10408430903505036

Google Scholar

[12] T. Kumar, S. Sadhukhan, D. Rana, A. Bhattacharyya, D.Chattopadhyay, M. Chakraborty, Green approaches to synthesize reduced graphene oxide and assessment of its electrical properties,Nano-Struct. Nano-Objects. 19 (2019) 100362.

DOI: 10.1016/j.nanoso.2019.100362

Google Scholar

[13] K. Silva, H. Huang, R. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants, Carbon. 119 (2017) 190–199.

DOI: 10.1016/j.carbon.2017.04.025

Google Scholar

[14] D. Chen, L. Li, L. Guo, An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid, Nanotechnology. 22 (2011) 1–7.

DOI: 10.1088/0957-4484/22/32/325601

Google Scholar

[15] C.K. Chua, M. Pumera, The reduction of graphene oxide with hydrazine: elucidating its reductive capability based on a reaction-model approach, Chem. Commun. 52 (2016) 72–75.

DOI: 10.1039/c5cc08170j

Google Scholar

[16] G. B. Mahendran, S. J. Ramalingam, J.B.B. Rayappan, S. Kesavan, T. Periathambi, N. Nesakumar, Green preparation of reduced graphene oxide by Bougainvillea glabra flower extract and sensing application, J. Mater. Sci.: Mater. Electron. 31 (2020) 14345–14356.

DOI: 10.1007/s10854-020-03994-4

Google Scholar

[17] J. Wang, E.C. Salihi, L. Šiller, Green reduction of graphene oxide using alanine, Mater. Sci. Eng. C. 72 (2017) 1–6.

DOI: 10.1016/j.msec.2016.11.017

Google Scholar

[18] G. Bhattacharya, S. Sas, S. Wadhwa, A. Mathur, J. McLaughlin, S. Roy, Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications, RSC Adv.7 (2017) 26680–26688.

DOI: 10.1039/c7ra02828h

Google Scholar

[19] L. Xu, Y. Liao, N. Li, Y. Li, J. Zhang, Y. Wang, X. Hu, C. Li, Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications, J. Colloid Interface Sci. 514 (2018) 733–739.

DOI: 10.1016/j.jcis.2018.01.014

Google Scholar

[20] S. Mahata, A. Sahu, P. Shukla, A. Rai, M. Singh, V. Rai, The novel and efficient reduction of graphene oxide using Ocimum sanctum L. leaf extract as an alternative renewable bio-resource, New J. Chem. 42 (2018) 19945–19952.

DOI: 10.1039/c8nj04086a

Google Scholar

[21] S. Manchala, V. Tandava, D. Jampaiah, S. Bhargava, V. Shanker, Novel and Highly Efficient Strategy for the Green Synthesis of Soluble Graphene by Aqueous Polyphenol Extracts of Eucalyptus Bark and Its Applications in High-Performance Supercapacitors, ACS Sustain. Chem. Eng. 7 (2019) 11612–11620.

DOI: 10.1021/acssuschemeng.9b01506

Google Scholar

[22] F. C. Mascarenhas, N. Sykam, M. Selvakumar, M. Mahesha, Green reduction of graphene oxide using Indian gooseberry ( amla ) extract for gas sensing applications, J. Environ. Chem. Eng. 8 (2020) 103712.

DOI: 10.1016/j.jece.2020.103712

Google Scholar

[23] F. Abreu, M. Dornier, A. Dionisio, M. Carail, C. Caris-veyrat, C. Dhuique-mayer, Cashew apple ( Anacardium occidentale L .) extract from by-product of juice processing : A focus on carotenoids, Food Chem. 138 (2013) 25–31.

DOI: 10.1016/j.foodchem.2012.10.028

Google Scholar

[24] A. Pereira, T. Maciel, S. Rodrigues, Probiotic beverage from cashew apple juice fermented with Lactobacillus casei, Int. Food Res. J. 44 (2011) 1276–1283.

DOI: 10.1016/j.foodres.2010.11.035

Google Scholar

[25] D. Campos, A. Santos, D. Wolkoff, V. Matta, L. Cabral, S. Couri, Cashew apple juice stabilization by microfiltration, Desalination. 148 (2002) 61–65.

DOI: 10.1016/s0011-9164(02)00654-9

Google Scholar

[26] A. Marc, K. Ange, T. Achille, A. Georges, Phenolic profile of cashew apple juice ( Anacardium occidentale L .) from Yamoussoukro and Korhogo ( Côte d ' Ivoire ), J. Appl. Biosci. 49 (2012) 3331–3338.

Google Scholar

[27] K.P. Jibin, V. Prajitha, S. Thomas, Silica-graphene oxide reinforced rubber composites, Mater. Today. 34 (2020) 502–505.

DOI: 10.1016/j.matpr.2020.03.100

Google Scholar

[28] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar : New Functional Molecules for the Green Synthesis of Graphene Nanosheets, ACS Nano. 4 (2010) 2429–2437.

DOI: 10.1021/nn1002387

Google Scholar

[29] P. Khanam, A. Hasan, Biosynthesis and characterization of graphene by using non-toxic reducing agent from Allium Cepa extract : Anti-bacterial properties, Int. J. Biol. Macromol. 126 (2019) 151–158.

DOI: 10.1016/j.ijbiomac.2018.12.213

Google Scholar

[30] A. Bhanu, P.Vijayan, S. Thomas, J. Parameswaranpillai, D. Puglia, S. Siengchin, L. Aryakrishna, A. Manohar, Fabrication of water-resistant epoxy nanocomposite with improved dynamic mechanical properties and balanced thermal and dimensional stability : Study on dual role of graphene oxide nanosheets and barium oxide microparticles, Colloids Surf, A Physicochem Eng Asp. 617 (2021) 126405.

DOI: 10.1016/j.colsurfa.2021.126405

Google Scholar

[31] S. Babu, B. Kumar, R. Vankayala, P. Kalluru, Bioinspired reduced graphene oxide nanosheets using Terminalia chebula seeds extract, Spectrochim. Acta A Mol. Biomol. Spectrosc. 145 (2015) 117–124.

DOI: 10.1016/j.saa.2015.02.037

Google Scholar

[32] F.T. Johra, J. Lee, W. Jung, Facile and safe graphene preparation on solution based platform, J Ind Eng Chem. 20 (2014) 2883–2887.

DOI: 10.1016/j.jiec.2013.11.022

Google Scholar

[33] M. Bera, Chandravati, P. Gupta, P.K. Maji, Facile One-Pot Synthesis of Graphene Oxide by Sonication Assisted Mechanochemical Approach and Its Surface Chemistry, J. Nanosci. Nanotechnol. 18 (2017) 902–912.

DOI: 10.1166/jnn.2018.14306

Google Scholar

[34] M. Abdullah, R. Zakaria, S. Zein, Green tea polyphenol-reduced graphene oxide: Derivatisation, reduction efficiency, reduction mechanism and cytotoxicity, RSC Adv. 4 (2014) 34510–34518.

DOI: 10.1039/c4ra04292a

Google Scholar

[35] DAN. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat Nanotechnol. 3 (2008) 101–105.

DOI: 10.1038/nnano.2007.451

Google Scholar

[36] B. Konkena, S. Vasudevan, Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements, J. Phys. Chem. Lett. 3 (2012) 867–872.

DOI: 10.1021/jz300236w

Google Scholar

[37] D. Hou, Q. Liu, H. Cheng, H. Zhang, S. Wang, Green reduction of graphene oxide via Lycium barbarum extract, J. Solid State Chem. 246 (2017) 351–356.

DOI: 10.1016/j.jssc.2016.12.008

Google Scholar

[38] O. Akhavan, M. Kalaee, Z.S. Alavi, S. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide, Carbon. 50 (2012) 3015–3025.

DOI: 10.1016/j.carbon.2012.02.087

Google Scholar

[39] D. Suresh, Udayabhanu, H. Nagabhushana, S. Sharma, Clove extract mediated facile green reduction of graphene oxide, its dye elimination and antioxidant properties, Mater. Lett. 142 (2015) 4-6.

DOI: 10.1016/j.matlet.2014.11.073

Google Scholar

[40] G. Lee, B. Kim, Biological reduction of graphene oxide using plant leaf extracts, Biotechnol. Prog. 30 (2014) 463–469.

DOI: 10.1002/btpr.1862

Google Scholar

[41] S. Yaragalla, R. Rajendran, J. Jose, M. Almaadeed, N. Kalarikkal, S. Thomas, Preparation and characterization of green graphene using grape seed extract for bioapplications, Mater. Sci. Eng. C. 65 (2016) 345–353.

DOI: 10.1016/j.msec.2016.04.050

Google Scholar

[42] S. Yaragalla, R. Rajendran, M. AlMaadeed, N. Kalarikkal, S. Thomas, Chemical modification of graphene with grape seed extract: Its structural, optical and antimicrobial properties, Mater. Sci. Eng. C .102 (2019) 305–314.

DOI: 10.1016/j.msec.2019.04.061

Google Scholar

[43] L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep. 473 (2009) 51–87.

DOI: 10.1016/j.physrep.2009.02.003

Google Scholar

[44] X. Wang, I. Kholmanov, H. Chou, R. Ruoff, Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films, ACS Nano. 9 (2015) 8737–8743.

DOI: 10.1021/acsnano.5b03814

Google Scholar

[45] M. Ansari, R. Johari, W. Siddiqi, Novel and green synthesis of chemically reduced graphene sheets using Phyllanthus emblica (Indian Gooseberry) and its photovoltaic activity, Mater. Res. Express. 6 (2019) 055027.

DOI: 10.1088/2053-1591/ab0439

Google Scholar

[46] Z. Fan, W. Kai, J. Yan, T. Wei, L. Zhi, J. Feng, Y. Ren, P. Song, F. Wei, Facile Synthesis of Graphene Nanosheets via Fe Reduction of Exfoliated Graphite Oxide, ACS Nano. 5 (2011) 191–198.

DOI: 10.1021/nn102339t

Google Scholar

[47] Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun, S. De, I Mcgovern, B. Holland, M. Byrne, Y. Ko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. Ferrari, J. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2008) 563–568.

DOI: 10.1038/nnano.2008.215

Google Scholar

[48] W. Zhang, J. Cui, C. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, G. Li, A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach, Angew. Chem. 48 (2009) 5864–5868.

DOI: 10.1002/anie.200902365

Google Scholar

[49] H. Chu, C. Lee, N. Tai, Green reduction of graphene oxide by Hibiscus sabdariffa L . to fabricate flexible graphene electrode, Carbon. 80 (2014) 725–733.

DOI: 10.1016/j.carbon.2014.09.019

Google Scholar

[50] B. Li, X. Jin, J. Lin, Z. Chen, Green reduction of graphene oxide by sugarcane bagasse extract and its application for the removal of cadmium in aqueous solution, J. Clean. Prod. 189 (2018) 128–134.

DOI: 10.1016/j.jclepro.2018.04.018

Google Scholar

[51] J. Li, G. Xiao, C.Chen, R. Li, D. Yan, Superior dispersions of reduced graphene oxide synthesized by using gallic acid as reductant and stabilizer, J. Mater. Chem. A. 1 (2013) 1481–1487.

DOI: 10.1039/c2ta00638c

Google Scholar

[52] V. Agarwal, P. Zetterlund, Strategies for reduction of graphene oxide – A comprehensive review, Chem. Eng. J. 405 (2021) 127018.

DOI: 10.1016/j.cej.2020.127018

Google Scholar

[53] M. Bandeira, A. Possan, S. Pavin, C. Raota, M. Vebber, M. Giovanela, M. Roesch-ely, D. Devine, J. Crespo, Mechanism of formation , characterization and cytotoxicity of green synthesized zinc oxide nanoparticles obtained from Ilex paraguariensis leaves extract, Nano-Struct. Nano-Objects. 24 (2020) 100532.

DOI: 10.1016/j.nanoso.2020.100532

Google Scholar

[54] C. Bonatto, L. Silva, Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshells, Ind Crops Prod. 58 (2014) 46–54.

DOI: 10.1016/j.indcrop.2014.04.007

Google Scholar

[55] K.S. Mukunthan, S. Balaji, Cashew Apple Juice ( Anacardium occidentale L .) Speeds Up the Synthesis of Silver Nanoparticles, Int. J. Green Nanotechnol. 4 (2012) 71–79.

DOI: 10.1080/19430892.2012.676900

Google Scholar

[56] M. Aunkor, I. Mahbubul, R. Saidur, H.S.C. Metselaar, The green reduction of graphene oxide, RSC Adv.6 (2016) 27807–27828.

DOI: 10.1039/c6ra03189g

Google Scholar

[57] Y. Lei, Z. Tang, R. Liao, B. Guo, Hydrolysable tannin as environmentally friendly reducer and stabilizer for graphene oxide, Green Chem.13 (2011) 1655–1658.

DOI: 10.1039/c1gc15081b

Google Scholar

[58] D. Hou, Q. Liu, H. Cheng, K. Li, D. Wang, H. Zhang, Chrysanthemum extract assisted green reduction of graphene oxide, Mater. Chem. Phys.183 (2016) 76–82.

DOI: 10.1016/j.matchemphys.2016.08.004

Google Scholar