Nitrogen Dioxide Gas Sensor of In2O3- ZnO Polyhedron Nanostructures Prepared by Spray Pyrolysis

Article Preview

Abstract:

Heterostructure thin films of indium and zinc oxides (IZO) were prepared by spray pyrolysis from an aqueous solution of the precursors at different substrate temperatures (TS). The polycrystalline structure of bixbyite appeared at a low temperature. The crystallinity was enhanced with the emergence of the zinc oxide phase. By increasing the TS to 623 K, the crystallite size was increased. SEM images reveal that the deposited sample at 523 K is composed of irregularly shaped nanoparticles with a lack of links. Increasing the TS to 573 K increases the average particle diameters, and the particles appeared as polyhedrons well connected with cavities between them, which candidates for gas sensing applications. Increasing TS to 623 K resulted in the particles merging. NO2 gas sensor results confirmed the enhancement of IZO sensitivity performance at 573 K. Keywords: Gas sensor, thin film metal oxide, spray pyrolysis, In2O3– ZnO

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-51

Citation:

Online since:

October 2021

Export:

Price:

* - Corresponding Author

[1] A. Vomiero et al., In2O3 nanowires for gas sensors: morphology and sensing characterisation, Thin Solid Films. 515 (2007) 8356–8359.

DOI: 10.1016/j.tsf.2007.03.034

Google Scholar

[2] R. Kumar, X. Liu, J. Zhang, and M. Kumar, Room-Temperature Gas Sensors Under Photoactivation : From Metal Oxides to 2D Materials, Nano-Micro Lett. 12 (2020) 1–37.

DOI: 10.1007/s40820-020-00503-4

Google Scholar

[3] D. Meena, B. Singh, A. Anand, M. Singh, and M. C. Bhatnagar, Phase dependent selectivity shifting behavior of Cd2SnO4 nanoparticles based gas sensor towards volatile organic compounds ( VOC ) at low operating temperature, J. Alloys Compd. 15 (2020) 153117.

DOI: 10.1016/j.jallcom.2019.153117

Google Scholar

[4] S. Basu, Y. H. Wang, C. Ghanshyam, and P. Kapur, Fast response time alcohol gas sensor using nanocrystalline F-doped SnO2 films derived via sol-gel method, Bull. Mater. Sci. 36 (2013) 521–533.

DOI: 10.1007/s12034-013-0493-9

Google Scholar

[5] B. A. Hasan, J. M. Rzaij, and I. M. Ali, Sensing Properties of (In2O3:Eu) Thin Films, Aust. J. Basic Appl. Sci. 10 (2016) 143–150.

Google Scholar

[6] Z. Q. Zheng, L. F. Zhu, and B. Wang, In2O3 Nanotower Hydrogen Gas Sensors Based on Both Schottky Junction and Thermoelectronic Emission, Nanoscale Res. Lett. 10 (2015) 293.

DOI: 10.1186/s11671-015-1002-4

Google Scholar

[7] X. Liang and D. R. Clarke, Relation between thermolectric properties and phase equilibria in the ZnO-In2O3binary system, Acta Mater. 63 (2014) 191–201.

DOI: 10.1016/j.actamat.2013.10.027

Google Scholar

[8] T. Moriga, T. Okamoto, K. Hirutaa, A. Fujiwara, I. Nakabayashi, and K. Tominaga, Structures and Physical Properties of Films Deposited by Simultaneous DC Sputtering of ZnO and In2O3 or ITO Targets, J. Solid State Chem. 155 (2000) 312–319.

DOI: 10.1006/jssc.2000.8919

Google Scholar

[9] T. Moriga, D. D. Edwards, T. O. Mason, G. B. Palmer, and K. R. Poeppelmeier, Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxide – Indium Oxide System, J. Am. Ceram. Soc. 81 (1998) 1310–1316.

DOI: 10.1111/j.1151-2916.1998.tb02483.x

Google Scholar

[10] P. Perumal, Influence of Deposition Time on the Microstructure and Transport Properties of CdO Thin Films Prepared by Chemical Bath Deposition, J. Surf. Eng. Mater. Adv. Technol. 2 (2012) 71–75.

DOI: 10.4236/jsemat.2012.22013

Google Scholar

[11] A. Klein, C. Körber, and A. Wachau, Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment, Materials (Basel). 3 (2010) 4892–4914.

DOI: 10.3390/ma3114892

Google Scholar

[12] T. J. Coutts, T. O. Mason, J. D. Perkins, and D. S. Ginley, Transparent Conducting Oxides : Status and Opportunities in Basic, in 195th Meeting of the Electrochemical Society. (1999) 1–15.

Google Scholar

[13] J. M. Rzaij and N. F. Habubi, Room temperature gas sensor based on La2O3 doped CuO thin films, Appl. Phys. A Mater. Sci. Process. 126 (2020) 560.

DOI: 10.1007/s00339-020-03751-8

Google Scholar

[14] D. C. Pugh, V. Luthra, A. Singh, and I. P. Parkin, Enhanced gas sensing performance of indium doped zinc oxide nanopowders, RSC Adv. 5 (2015) 85767–85774.

DOI: 10.1039/c5ra11613a

Google Scholar

[15] L. Filipovic and S. Selberherr, Performance and Stress Analysis of Metal Oxide Films for CMOS-Integrated Gas Sensors, Sensors. 15 (2015) 7206–7227.

DOI: 10.3390/s150407206

Google Scholar

[16] E. Espid and F. Taghipour, Sensors and Actuators B : Chemical Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED, Sensors Actuators B. Chem. 241 (2017) 828–839.

DOI: 10.1016/j.snb.2016.10.129

Google Scholar

[17] A. P. Rambu, D. Sirbu, N. Iftimie, and G. I. Rusu, Polycrystalline ZnO–In2O3 thin films as gas sensors, Thin Solid Films. 520 (2011) 1303–1307.

DOI: 10.1016/j.tsf.2011.04.158

Google Scholar

[18] R. Dhahri et al., CO sensing characteristics of In-doped ZnO semiconductor nanoparticles, J. Sci. Adv. Mater. Devices. 2 (2017) 34–40.

Google Scholar

[19] B. E. Al-Jumaili, J. M. Rzaij, and A. S. Ibraheam, Nanoparticles of CuO thin films for room temperature NO2 gas detection: Annealing time effect, Mater. Today Proc. 42 (2021) 2603–2608.

DOI: 10.1016/j.matpr.2020.12.588

Google Scholar

[20] A. A. Khalefa, J. M. Marei, H. A. Radwan, and J. M. Rzaij, In2O3-CuO NANO-FLAKES PREPARED BY SPRAY PYROLYSIS FOR GAS SENSING APPLICATION, Dig. J. Nanomater. Biostructures. 16 (2021) 197–204.

DOI: 10.15251/djnb.2021.161.197

Google Scholar

[21] J. M. Rzaij, A. S. Ibraheam, and A. M. Abass, Cobalt Effect on the Growth of Cadmium Oxide Nanostructure Prepared by Spray Pyrolysis Technique, Baghdad Sci. J. 18 (2021) 401–408.

DOI: 10.21123/bsj.2021.18.2.0401

Google Scholar

[22] M. Mirza, J. Wang, L. Wang, J. He, and C. Jiang, Response enhancement mechanism of NO2 gas sensing in ultrathin pentacene field-effect transistors, Org. Electron. 24 (2015) 96–100.

DOI: 10.1016/j.orgel.2015.05.022

Google Scholar

[23] R. Li et al., Influence of Charge Carriers Concentration and Mobility on the Gas Sensing Behavior of Tin Dioxide, coatings. 9 (2019), 1–12.

Google Scholar

[24] J. J. Prince, S. Ramamurthy, B. Subramanian, and C. Sanjeeviraja, Spray pyrolysis growth and material properties of In2O3 films, J. Cryst. Growth. 240 (2002), 142–151.

DOI: 10.1016/s0022-0248(01)02161-3

Google Scholar

[25] Y. F. Sun, S. B. Liu, and F. L. Meng, Metal oxide nanostructures and their gas sensing properties: A review, Sensors. 12 (2012) 2610–2631.

DOI: 10.3390/s120302610

Google Scholar

[26] P. Feng, F. Shao, Y. Shi, and Q. Wan, Gas sensors based on semiconducting nanowire field-effect transistors, Sensors (Basel). 14 (2014) 17406–17429.

DOI: 10.3390/s140917406

Google Scholar

[27] R. H. Bari and S. B. Patil, Studies on Spray Pyrolised Nanostructured SnO2 Thin Films for H2 Gas Sensing Application, Int. Lett. Chem. Phys. Astron. 36 (2014), 125–141.

DOI: 10.56431/p-5f086q

Google Scholar

[28] H. Du, J. Wang, Y. Sun, P. Yao, X. Li, and N. Yu, Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma, Sensors Actuators B. Chem. 206 (2015) 753–763.

DOI: 10.1016/j.snb.2014.09.010

Google Scholar