Corrosion Resistance and Adhesion Properties of Electrophoretic Deposited Nano TiN Powder

Article Preview

Abstract:

The purpose of this study was to create TiN films on 430 stainless steel by electrophoretic deposition. The microstructure of the coatings was investigated by SEM. The results of the X-ray diffraction showed that after the sintering, apart from the titanium nitride, no secondary phase was observed. Sintering at 1200 °C for 1 h reduced porosity and increased adhesion between particles. Corrosion current density and corrosion potential were obtained for the best coated sample of 6.3 μA.cm-2 and-332 mV (vs. SCE) versus 37 μA.cm-2 (decreased to one sixth) and-453 mV (vs. SCE) for bare 430 steel, respectively. Rockwell indentation test according to VDI 3198 standard and the type and volume of the fracture area was used to evaluate the interfacial adhesion of the coatings. The results showed that all coatings resist shear stress and prevent a wide range of delamination, however the 1200 °C sintered sample has more adhesion strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-25

Citation:

Online since:

October 2021

Export:

Price:

* - Corresponding Author

[1] Ebrahimifar, H. and Zandrahimi, M., Surface and Coatings Technology, 206(1), (2011), 75-81.

Google Scholar

[2] Garcia, E. M., Surface and Coatings Technology, 235 (2013), 10-14.

Google Scholar

[3] Hastuty, S., Nishikata, A., and Tsuru, T., Corrosion Science, 52(6), (2010), 2035-2043.

Google Scholar

[4] Cui, W., Qin, G., Duan, J., and Wang, H., Materials Science and Engineering: C, 71 (2017), 520-528.

Google Scholar

[5] Balla, V. K., Bhat, A., Bose, S., and Bandyopadhyay, A., Journal of the mechanical behavior of biomedical materials, 6 (2012), 9-20.

Google Scholar

[6] Dayaghi, A. M., Askari, M., and Gannon, P., Surface and Coatings Technology, 206(16), (2012), 3495-3500.

DOI: 10.1016/j.surfcoat.2012.02.023

Google Scholar

[7] Hsu, C., Lin, C., Huang, K., and Ou, K., Surface and Coatings Technology, 231 (2013), 380-384.

Google Scholar

[8] Das, S., Guha, S., Ghadai, R., and Sharma, A., Ceramics International, 47(12), (2021), 16809-16819.

DOI: 10.1016/j.ceramint.2021.02.254

Google Scholar

[9] Kamenetskih, A., Kukharenko, A., Kurmaev, E., Skorikov, N., Gavrilov, N., Cholakh, S., Chukin, A., Zainullina, V., and Korotin, M., Surface and Coatings Technology, 278 (2015), 87-91.

DOI: 10.1016/j.surfcoat.2015.08.007

Google Scholar

[10] Ahmadi, M. and Aghajani, H., Ceramics International, 43(9), (2017), 7321-7328.

Google Scholar

[11] Ahmadi, M. and Aghajani, H., Ceramics International, 44(6), (2018), 5988-5995.

Google Scholar

[12] Vázquez, A., Hernández-Uresti, D., and Obregón, S., Applied Surface Science, 386 (2016), 412-417.

Google Scholar

[13] Kavanlouei, M. and Akbari, A., Journal of the American Ceramic Society, 101(8), (2018), 3288-3298.

Google Scholar

[14] Aghajani, H. and Pouzesh, M., Journal of Particle Science & Technology, 3(4), (2018), 219-232.

Google Scholar

[15] Myung, S.-T., Kumagai, M., Asaishi, R., Sun, Y.-K., and Yashiro, H., Electrochemistry Communications, 10(3), (2008), 480-484.

DOI: 10.1016/j.elecom.2008.01.001

Google Scholar

[16] Drdlik, D., Moravek, T., Rahel, J., Stupavska, M., Cihlar, J., Drdlikova, K., and Maca, K., Ceramics International, (2018).

DOI: 10.1016/j.ceramint.2018.02.215

Google Scholar

[17] Shahriari, A. and Aghajani, H., Journal of Materials Engineering and Performance, 25(10), (2016), 4369-4382.

Google Scholar

[18] Shahriari, A., Aghajani, H., and Hosseini, M., Prog. Color Colorants Coat, 9 (2016), 151-162.

Google Scholar

[19] Shakeri, M. S., Alizadeh, M., Kazemzadeh, A., Ebadzadeh, T., and Aghajani, H., signal, 20 (2016), 25.

Google Scholar

[20] Shakeri, M. S., Alizadeh, M., Kazemzadeh, A., Ebadzadeh, T., and Aghajani, H., Micro & Nano Letters, 13(2), (2018), 184-189.

DOI: 10.1049/mnl.2017.0290

Google Scholar

[21] Behrangi, S. and Aghajani, H., Micro & Nano Letters, 13(5), (2018), 611-616.

Google Scholar

[22] Shahriari, A. and Aghajani, H., Protection of Metals and Physical Chemistry of Surfaces, 53(3), (2017), 518-526.

Google Scholar

[23] Cui, X., Yu, Z., Ma, M., and Chu, P. K., Surface and Coatings Technology, 204(4), (2009), 418-422.

Google Scholar

[24] Jafarpour, M., Aghajani, H., and Golshani Ajabshir, A., Journal of Dispersion Science and Technology, (2018), 1-10.

Google Scholar

[25] Vidakis, N., Antoniadis, A., and Bilalis, N., Journal of Materials Processing Technology, 143 (2003), 481-485.

Google Scholar

[26] Rezaee, M., Tsai, L.-C., Haider, M. I., Yazdi, A., Sanatizadeh, E., and Salowitz, N. P., Scientific reports, 9(1), (2019), 1-11.

Google Scholar

[27] Park, J. H., Kim, J. S., and Park, J. M., Surface and Coatings Technology, 236 (2013), 172-181.

Google Scholar

[28] Besra, L. and Liu, M., Progress in materials science, 52(1), (2007), 1-61.

Google Scholar

[29] Chen, F. and Liu, M., Journal of the European Ceramic Society, 21(2), (2001), 127-134.

Google Scholar

[30] Hasanpoor, M., Aliofkhazraei, M., and Hosseinali, M., Journal of the American Ceramic Society, 100(3), (2017), 901-910.

Google Scholar

[31] Rastkerdar, E., Shamanian, M., and Saatchi, A., Journal of Materials Engineering and Performance, 22(4), (2013), 1149-1160.

Google Scholar

[32] Rastkerdar, E., Aghajani, H., Kianvash, A., and Sorrell, C., INTERNATIONAL JOURNAL OF ENGINEERING, 31(7), (2018), 1146-1151.

Google Scholar

[33] Mendoza, C., Gonzalez, Z., Gordo, E., Ferrari, B., and Castro, Y., Journal of the European Ceramic Society, 38(2), (2018), 495-500.

Google Scholar