Fabrication of Platinum/ Polypyrol-Carbon Nanofiber Nanocomposite Electrocatalyst for Direct Methanol Fuel Cells

Article Preview

Abstract:

A novel electrocatalyst has been developed based on polypyrol-carbon nanofiber (PPy-CNF) support material to increase the stability of Pt/ PPy-CNF/GDL electrocatalyst in direct methanol fuel cell (DMFC). A novel conducting polymer (PPy)-CNF nanocomposites was prepared by a solution dispersion technique and used to support platinum nanoparticles. For preparation of catalyst ink, 20 wt.% Pt/PPy-CNF electrocatalyst with a platinum loading of 0.4 mg cm-2 was prepared by ethylene glycol (EG) method. Physical and electrochemical properties were analyzed by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) imaging and cyclic voltammetry (CV) experiments. FTIR results prove the existence of PPy in the support. SEM images showed that the one–dimensional CNFs were efficaciously covered by PPy. The TEM characterization revealed that the fine Pt nanoparticles prepared by polyol method were dispersed on the surface of the electrocatalyst successfully. XRD patterns also revealed that the mean size of Pt crystal nanoparticles was about 3.69, 6.51 and 2.91 nm for Pt/PPy-CNF, Pt/CNF and Pt/C electrocatalyst respectively. The size of the PPy on carbon paper has been measured in the range of 35-40nm by AFM. Based on the electrochemical properties and acceleration tests evaluated by cyclic voltammetry measurements and Chronoamperometric experiments it was found that the as prepared Pt/PPy-CNF/GDL electrode exhibited a comparable electrochemical surface are (ECSA), MOR activity and so stability (in the presence of methanol) with respect to the Pt/CNF /GDL and Pt/C/GDL commercial one. A rather significant reduction in the peak potential of methanol electro-oxidation from 0.69V for Pt/C/GDL to 0.76V for Pt/PPy-CNF/GDL electrode indicates that an increase in the activity for MOR is achieved by replacing the C by PPy-CNF. The corresponding ECSA values for the Pt/PPy-CNF/GDL, Pt/CNF/GDL and Pt/C/GDL electrodes were 108.69, 53.93 and 17.98 m2g-1 respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-117

Citation:

Online since:

October 2021

Export:

Price:

* - Corresponding Author

[1] P. Costamagna and S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J. Power Sources. 102 (2001) 253-269.

DOI: 10.1016/s0378-7753(01)00808-4

Google Scholar

[2] L. Carrette, K. Friedrich, and U. Stimming, Fuel cells–fundamentals and applications. Fuel cells. 1 (2001) 5-39.

DOI: 10.1002/1615-6854(200105)1:1<5::aid-fuce5>3.0.co;2-g

Google Scholar

[3] J. Wang, S. Wasmus, and R. Savinell, Evaluation of Ethanol, 1‐Propanol, and 2‐Propanol in a Direct Oxidation Polymer‐Electrolyte Fuel Cell A Real‐Time Mass Spectrometry Study. J. Electrochem. Soc. 142 (1995) 4218-4224.

DOI: 10.1149/1.2048487

Google Scholar

[4] V.M. Schmidt, R. Ianniello, E. Pastor, and S. González, Electrochemical reactivity of ethanol on porous Pt and PtRu: Oxidation/reduction reactions in 1 M HClO4. J. Phys. Chem. 100 (1996) 17901-17908.

DOI: 10.1021/jp9617027

Google Scholar

[5] M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, and F. Aziz, An advanced, efficient and highly durable of reduced graphene oxide/platinum nanoparticles nanocomposite electrocatalyst fabricated via one-step method of the hydrothermal-assisted formic acid process for the electrocatalytic oxidation reaction of methanol. Solid State Sciences. 101 (2020) 106149.

DOI: 10.1016/j.solidstatesciences.2020.106149

Google Scholar

[6] M.F.R. Hanifah, J. Jaafar, M. Othman, A. Ismail, M. Rahman, N. Yusof, and F. Aziz, A novel one-step synthesis of nanocluster-like Pt incorporated reduced graphene oxide as robust nanocatalyst for highly efficient electro-catalytic oxidation of methanol. Mater. Lett. 254 (2019) 37-41.

DOI: 10.1016/j.matlet.2019.07.012

Google Scholar

[7] M. Fahrul Radzi Hanifah, J. Jaafar, M. Aziz, A. Ismail, M. Thirmizir, M. Othman, M.A. Rahman, and N. Yusof, Electrocatalytic study of efficient synthesized graphene nanosheets incorporated with Pt nanoparticles for methanol oxidation reaction. Electroanalysis. 28 (2016) 222-226.

DOI: 10.1002/elan.201500468

Google Scholar

[8] M.F.R. Hanifah, J. Jaafar, M. Othman, A. Ismail, M. Rahman, N. Yusof, W.N.W. Salleh, F. Aziz, and A.Z.A. Ajid, Advanced ternary RGO/bimetallic Pt-Pd alloy/CeO2 nanocomposite electrocatalyst by one-step hydrothermal-assisted formic acid reduction reaction for methanol electrooxidation. Journal of Environmental Chemical Engineering. 9 (2021) 104991.

DOI: 10.1016/j.jece.2020.104991

Google Scholar

[9] M.F.R. Hanifah, J. Jaafar, M. Aziz, M.H.D. Othman, M.A. Rahman, A.F. Ismail, C.S. Jing, and F. Aziz, Morphological Study of Synthesized RGO/Pt Nanocomposites via Facile Chemical Reduction Method. Sains Malaysiana. 46 (2017) 629-635.

DOI: 10.17576/jsm-2017-4604-16

Google Scholar

[10] G. Álvarez, F. Alcaide, P.L. Cabot, M.J. Lázaro, E. Pastor, and J. Solla-Gullón, Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support. Int. J . Hydrogen Energy. 37 (2012) 393-404.

DOI: 10.1016/j.ijhydene.2011.09.055

Google Scholar

[11] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. The Journal of Physical Chemistry B. 107 (2003) 6292-6299.

DOI: 10.1021/jp022505c

Google Scholar

[12] T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, Y. Takasawa, and J. Nakamura, Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem. Commun. (2004) 840-841.

DOI: 10.1039/b400607k

Google Scholar

[13] E. Yoo, T. Okada, T. Kizuka, and J. Nakamura, Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells. J. Power Sources. 180 (2008) 221-226.

DOI: 10.1016/j.jpowsour.2008.01.065

Google Scholar

[14] S. Liao, K.-A. Holmes, H. Tsaprailis, and V.I. Birss, High performance PtRuIr catalysts supported on carbon nanotubes for the anodic oxidation of methanol. J.Am. Chem. Soc. 128 (2006) 3504-3505.

DOI: 10.1021/ja0578653

Google Scholar

[15] D.-J. Guo and H.-L. Li, High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles. Journal of Electroanalytical Chemistry. 573 (2004) 197-202.

DOI: 10.1016/j.jelechem.2004.07.006

Google Scholar

[16] G.G. Wallace, P.R. Teasdale, G.M. Spinks, and L.A. Kane-Maguire, Conductive electroactive polymers: intelligent polymer systems. 2008: CRC press. pp.

DOI: 10.1201/9781420067156

Google Scholar

[17] E. Antolini, E.R. Gonzalez, polymer supports for low-temperature fuel cell catalysts. Applied Catalysis A: General. 365 (2009) 1-19.

DOI: 10.1016/j.apcata.2009.05.045

Google Scholar

[18] G. Inzelt, M. Pineri, J. Schultze, and M. Vorotyntsev, Electron and proton conducting polymers: recent developments and prospects. Electrochim. Acta. 45 (2000) 2403-2421.

DOI: 10.1016/s0013-4686(00)00329-7

Google Scholar

[19] M. Yaldagard, Green in-situ fabrication of PtW/poly ethylen dioxy thiophene/graphene nanoplates/gas diffusion layer (PtW/PEDOT/GNP/GDL) electrode and its electrocatalytic property for direct methanol fuel cells application. Iranian Journal of Hydrogen & Fuel Cell. 6 (2019) 39-58.

Google Scholar

[20] G. Inzelt, Conducting polymers: a new era in electrochemistry. 2012: Springer Science & Business Media. pp.

Google Scholar

[21] S. Kirchmeyer, A. Elschner, K. Reuter, W. Lovenich, and U. Merker, PEDOT as a conductive polymer: principles and applications. 2010, CRC Press New York.

DOI: 10.1201/b10318

Google Scholar

[22] G. Heywang and F. Jonas, Poly (alkylenedioxythiophene) s—new, very stable conducting polymers. Adv. Mater. 4 (1992) 116-118.

DOI: 10.1002/adma.19920040213

Google Scholar

[23] V. Selvaraj and M. Alagar, Pt and Pt–Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9 (2007) 1145-1153.

DOI: 10.1016/j.elecom.2007.01.011

Google Scholar

[24] L.-X. Wang, X.-G. Li, and Y.-L. Yang, Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers. 47 (2001) 125-139.

DOI: 10.1016/s1381-5148(00)00079-1

Google Scholar

[25] M. Raso, I. Carrillo, E. Mora, E. Navarro, M. Garcia, and T. Leo, Electrochemical study of platinum deposited by electron beam evaporation for application as fuel cell electrodes. International journal of hydrogen energy. 39 (2014) 5301-5308.

DOI: 10.1016/j.ijhydene.2013.12.111

Google Scholar

[26] F. López-García, G. Canché-Escamilla, A. Ocampo-Flores, P. Roquero-Tejeda, and L. Ordóñez, Controlled size nano-polypyrrole synthetized in micro-emulsions as PT support for the ethanol electro-oxidation reaction. Int. J. Electrochem. Sci. 8 (2013) 3794-3813.

Google Scholar

[27] H. Wu, T. Yuan, Q. Huang, H. Zhang, Z. Zou, J. Zheng, and H. Yang, Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells. Electrochimica Acta. 141 (2014) 1-5.

DOI: 10.1016/j.electacta.2014.06.149

Google Scholar

[28] I. Carrillo, T. Leo, O. Santiago, F. Acción, E. Moreno-Gordaliza, and M. Raso, Polypyrrole and platinum deposited onto carbon substrate to enhance direct methanol fuel cell electrodes behaviour. International Journal of Hydrogen Energy. 43 (2018) 16913-16921.

DOI: 10.1016/j.ijhydene.2018.02.096

Google Scholar

[29] S.-Y. Huang, P. Ganesan, and B.N. Popov, Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Appl.Catal.B. 93 (2009) 75-81.

DOI: 10.1016/j.apcatb.2009.09.014

Google Scholar

[30] J. Fan, M. Wan, D. Zhu, B. Chang, Z. Pan, and S. Xie, Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole. J. Appl. Polym. Sci. 74 (1999) 2605-2610.

DOI: 10.1002/(sici)1097-4628(19991209)74:11<2605::aid-app6>3.0.co;2-r

Google Scholar

[31] H. Mi, X. Zhang, Y. Xu, and F. Xiao, Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Appl. Surf. Sci. 256 (2010) 2284-2288.

DOI: 10.1016/j.apsusc.2009.10.053

Google Scholar

[32] Y. Zou, C. Xiang, L. Yang, L.-X. Sun, F. Xu, and Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int. J . Hydrogen Energy. 33 (2008) 4856-4862.

DOI: 10.1016/j.ijhydene.2008.06.061

Google Scholar

[33] H.-S. Oh, K. Kim, and H. Kim, Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells. Int. J . Hydrogen Energy. 36 (2011) 11564-11571.

DOI: 10.1016/j.ijhydene.2011.06.079

Google Scholar

[34] H. Zhao, L. Li, J. Yang, Y. Zhang, and H. Li, Synthesis and characterization of bimetallic Pt–Fe/polypyrrole–carbon catalyst as DMFC anode catalyst. Electrochem. Commun. 10 (2008) 876-879.

DOI: 10.1016/j.elecom.2008.04.005

Google Scholar

[35] S. Mokrane, L. Makhloufi, and N. Alonso-Vante, Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. J. Solid State Electrochem. 12 (2008) 569-574.

DOI: 10.1007/s10008-007-0398-x

Google Scholar

[36] H. Zhao, L. Li, J. Yang, and Y. Zhang, Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. J. Power Sources. 184 (2008) 375-380.

DOI: 10.1016/j.jpowsour.2008.03.024

Google Scholar

[37] H.-S. Oh, J.-G. Oh, B. Roh, I. Hwang, and H. Kim, Development of highly active and stable non-precious oxygen reduction catalysts for PEM fuel cells using polypyrrole and a chelating agent. Electrochem. Commun. 13 (2011) 879-881.

DOI: 10.1016/j.elecom.2011.05.027

Google Scholar

[38] F. Memioğlu, A. Bayrakçeken, T. Öznülüer, and M. Ak, Synthesis and characterization of polypyrrole/carbon composite as a catalyst support for fuel cell applications. Int. J . Hydrogen Energy. 37 (2012) 16673-16679.

DOI: 10.1016/j.ijhydene.2012.02.086

Google Scholar

[39] H.-S. Oh, J.-G. Oh, and H. Kim, Modification of polyol process for synthesis of highly platinum loaded platinum–carbon catalysts for fuel cells. J. Power Sources. 183 (2008) 600-603.

DOI: 10.1016/j.jpowsour.2008.05.070

Google Scholar

[40] C. Bock, C. Paquet, M. Couillard, G.A. Botton, and B.R. MacDougall, Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J.Am. Chem. Soc. 126 (2004) 8028-8037.

DOI: 10.1021/ja0495819

Google Scholar

[41] B. Tian and G. Zerbi, Lattice dynamics and vibrational spectra of polypyrrole. The Journal of chemical physics. 92 (1990) 3886-3891.

DOI: 10.1063/1.457794

Google Scholar

[42] I.Y. Jeon, H.J. Choi, L.S. Tan, and J.B. Baek, Nanocomposite prepared from in situ grafting of polypyrrole to aminobenzoyl‐functionalized multiwalled carbon nanotube and its electrochemical properties. Journal of Polymer Science Part A: Polymer Chemistry. 49 (2011) 2529-2537.

DOI: 10.1002/pola.24684

Google Scholar

[43] B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction. Vol. 3. 2001: Prentice hall Upper Saddle River, NJ. pp.

Google Scholar

[44] Y. Shen and M. Wan, Soluble conducting polypyrrole doped with DBSA–CSA mixed acid. J. Appl. Polym. Sci. 68 (1998) 1277-1284.

DOI: 10.1002/(sici)1097-4628(19980523)68:8<1277::aid-app9>3.0.co;2-a

Google Scholar

[45] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources. 105 (2002) 13-19.

DOI: 10.1016/s0378-7753(01)00921-1

Google Scholar