Hot Injection Synthesis of Orthorhombic SnS Nanoparticles from Bis(O-n-Propyldithiocarbonato)Diphenyltin(IV)

Article Preview

Abstract:

The bis (O-n-propyldithiocarbonato) diphenyl of tin (IV) [Ph2Sn (S2COnPr)2] was synthesized as a precursor for the preparation of SnS nanoparticles. The complex was characterized by X-ray single crystal diffraction, thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR) and IR spectroscopy. Hot injection method was used to synthesize the SnS nanoparticles under nitrogen atmosphere at 260 °C. The SnS nanoparticles formed were studied by powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). The phase was found to be polycrystalline, orthorhombic SnS with a strong (111) preferred orientation. The band gap of SnS nanoparticles is 1.28eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-34

Citation:

Online since:

February 2021

Export:

Price:

* - Corresponding Author

[1] N. K. Reddy, M. Devika. E. Gopal. Review on tin (II) sulfide (SnS) material: synthesis, properties, and applications. Crit. Rev. Solid State Mater. Sci. 40 (2015) 359-398.

DOI: 10.1080/10408436.2015.1053601

Google Scholar

[2] H. Zhu, D. Yang, Y. Ji, H. Zhang, X. Shen. Two-dimensional SnS nanosheets fabricated by a novel hydrothermal method. J. Mater. Sci. 40 (2005) 591-595.

DOI: 10.1007/s10853-005-6293-x

Google Scholar

[3] D.J. Lewis, P. Kevin, O. Bakr, C. A. Muryn, M. A. Mohammad, P. O'Brien. Routes to tin chalcogenide materials as thin films or nanoparticles: a potentially important class of semiconductor for sustainable solar energy conversion. Inorg. Chem. Front. 1 (2014) 577-598.

DOI: 10.1039/c4qi00059e

Google Scholar

[4] A. R. Garcia, R. R. Trujillo, C. J. Álvarez, G. O. Daza, M. Nair, P. Nair. Thin film solar cell of SnS absorber with cubic crystalline structure. Phys. Status Solidi A, 212 (2015) 2332-2340.

DOI: 10.1002/pssa.201532405

Google Scholar

[5] E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, Y. Golan. Synthesis and properties of nanocrystalline π-SnS–a new cubic phase of tin sulphide. RSC Adv. 6 (2016) 5848-5855.

DOI: 10.1039/c5ra23092f

Google Scholar

[6] Z. Deng, D. Cao, J. He, S. Lin, S. M. Lindsay, Y. Liu. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS nano, 6 (2012) 6197-6207.

DOI: 10.1021/nn302504p

Google Scholar

[7] B. K. Patra, S. Sarkar, A. K. Guria, N. Pradhan. Monodisperse SnS nanocrystals: in just 5 seconds. J. Phys. Chem. Lett., 4 (2013) 3929-3934.

DOI: 10.1021/jz402294x

Google Scholar

[8] H. Liu, Y. Yan, Z. Wang, P. He. Facile synthesis of monodisperse, size-tunable SnS nanoparticles potentially for solar cell energy conversion. Nanotechnology, 21 (2010) 105707.

DOI: 10.1088/0957-4484/21/10/105707

Google Scholar

[9] H. Hu, B. Yang, J. Zeng, Y. Qian. Morphology evolution of SnS nanocrystals: from 3D urchin-like architectures to 1D nanostructures. Mater. Chem. Phys. 86 (2004) 233-237.

DOI: 10.1016/j.matchemphys.2004.04.001

Google Scholar

[10] S. Sohila, M. Rajalakshmi, C. Ghosh, A. Arora, C. Muthamizhchelvan. Optical and Raman scattering studies on SnS nanoparticles. J. Alloys Compd. 509 (2011) 5843-5847.

DOI: 10.1016/j.jallcom.2011.02.141

Google Scholar

[11] M. Buckingham, A. Catherall, M. Hill, A. Johnson, J. Parish. Aerosol-assisted chemical vapor deposition of CdS from xanthate single source precursors. Cryst. Growth Des. 17 (2017) 907-912.

DOI: 10.1021/acs.cgd.6b01795

Google Scholar

[12] A. Kana, T. Hibbert, M. Mahon,K. Molloy,I. Parkin,L. Price. Organotin unsymmetric dithiocarbamates: synthesis, formation and characterisation of tin (II) sulfide films by atmospheric pressure chemical vapour deposition. Polyhedron, 20 (2001) 2989-2995.

DOI: 10.1016/s0277-5387(01)00908-1

Google Scholar

[13] P. Matthews, P. McNaughter, D. Lewis, P. O'Brien. Shining a light on transition metal chalcogenides for sustainable photovoltaics. Chem. Sci. 8 (2017) 4177-4187.

DOI: 10.1039/c7sc00642j

Google Scholar

[14] E. Lewis, P. McNaughter, Z. Yin, Y. Chen, J. Brent, S. Saah, J. Raftery, J. Awudza, A. Johannes, M. Malik, P. O'Brien. In situ synthesis of PbS nanocrystals in polymer thin films from lead (II) xanthate and dithiocarbamate complexes: evidence for size and morphology control. Chem. Mater. 27 (2015) 2127-2136.

DOI: 10.1021/cm504765z

Google Scholar

[15] A. Gleizes. MOCVD of Chalcogenides, Pnictides, and Heterometallic Compounds from Single‐Source Molecule Precursors. Chem. Vap. Depos. 6 (2000) 155-173.

DOI: 10.1002/1521-3862(200008)6:4<155::aid-cvde155>3.0.co;2-y

Google Scholar

[16] M. Al-Shakban, P. Matthews, G. Deogratias, P. McNaughter, J. Raftery, I. Vitorica-Yrezabal, E. Mubofu, P. O'Brien. Novel xanthate complexes for the size-controlled synthesis of copper sulfide nanorods. Inorg. chem. 56 (2017) 9247-9254.

DOI: 10.1021/acs.inorgchem.7b01288

Google Scholar

[17] T. Xaba, M. Moloto, M. Al-Shakban, A. Malik, P. O'Brien, M. Moloto. The effect of temperature on the growth of Ag2O nanoparticles and thin films from bis (2-hydroxy-1-naphthaldehydato) silver (I) complex by the thermal decomposition of spin–coated films. Mat. Sci. Semicon. Proc. 71 (2017) 109-115.

DOI: 10.1016/j.mssp.2017.07.015

Google Scholar

[18] N. Savjani, J. Brent, P. O'Brien, AACVD of Molybdenum Sulfide and Oxide Thin Films From Molybdenum (V)‐based Single‐source Precursors. Chem. Vap. Depos., 21 (2015) 71-77.

DOI: 10.1002/cvde.201407135

Google Scholar

[19] G. Kociok-Köhn, K. Molloy, A. Sudlow, Molecular routes to Cu2ZnSnS4: a comparison of approaches to bulk and thin-film materials. Can. J. Chem. 92 (2014) 514-524.

DOI: 10.1139/cjc-2013-0497

Google Scholar

[20] K. Ramasamy, M. Malik, N. Revaprasadu, P. O'Brien. Routes to nanostructured inorganic materials with potential for solar energy applications. Chem. Mater. 25 (2013) 3551-3569.

DOI: 10.1021/cm401366q

Google Scholar

[21] P. O'Brien, R. Nomura. Single-molecule precursor chemistry for the deposition of chalcogenide (S or Se)-containing compound semiconductors by MOCVD and related methods. J. Mater. Chem. 5 (1995) 1761-1773.

DOI: 10.1039/jm9950501761

Google Scholar

[22] P. Matthews, M. Akhtar, M. Malik, N. Revaprasadu, P. O'Brien. Synthetic routes to iron chalcogenide nanoparticles and thin films. Dalton Trans . 45 (2016) 18803-18812.

DOI: 10.1039/c6dt03486a

Google Scholar

[23] P. Kevin, M. Malik, S. Mcadams, P. O'Brien. Synthesis of Nanoparticulate Alloys of the Composition Cu2Zn1–x FexSnS4: Structural, Optical, and Magnetic Properties. J. Phys. Chem. Lett. 137 (2015) 15086-15089.

DOI: 10.1021/jacs.5b10281

Google Scholar

[24] N. Al-Dulaimi, D. Lewis, X. Zhong, M. Malik, P. O'Brien. Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J. Mater. Chem. C, 4 (2016) 2312-2318.

DOI: 10.1039/c6tc00489j

Google Scholar

[25] N. Al-Dulaimi, E. Lewis, N. Savjani, P. McNaughter, S. Haigh, M. Malik, D. Lewis, P. O'Brien. The influence of precursor on rhenium incorporation into Re-doped MoS2 (Mo1− x Rex S2) thin films by aerosol-assisted chemical vapour deposition (AACVD). J. Mater. Chem. C, 5 (2017) 9044-9052.

DOI: 10.1039/c7tc01903c

Google Scholar

[26] M. Al-Shakban, Z. Xie, N. Savjani, M. Malik, P. O'Brien. A facile method for the production of SnS thin films from melt reactions. J. Mater. Sci. 51 (2016) 6166-6172.

DOI: 10.1007/s10853-016-9906-7

Google Scholar

[27] M. Al-Shakban, P. Matthews, E. Lewis, J. Raftery, I. Vitorica-Yrezabal, S. Haigh, D. Lewis, P. O'Brien. Chemical vapor deposition of tin sulfide from diorganotin (IV) dixanthates. J. Mater. Sci. 54 (2019) 2315-2323.

DOI: 10.1007/s10853-018-2968-y

Google Scholar

[28] A. Rabkin, S. Samuha, R. Abutbul, V. Ezersky, L. Meshi, Y. Golan. New nanocrystalline materials: a previously unknown simple cubic phase in the SnS binary system. Nano lett. 15 (2015) 2174-2179.

DOI: 10.1021/acs.nanolett.5b00209

Google Scholar

[29] T. Alqahtani, M. Khan, D. Kelly, S. Haigh, D. Lewis, P. O'Brien. Synthesis of Bi2− 2x Sb2x S3 (0≤ x≤ 1) solid solutions from solventless thermolysis of metal xanthate precursors. J. Mater. Chem. C, 6 (2018)12652-12659.

DOI: 10.1039/c8tc02374c

Google Scholar

[30] M. Al-Shakban, P. Matthews, X. Zhong, I. Vitorica-Yrezabal, J. Raftery, D. Lewis, P. O'Brien. On the phase control of CuInS2 nanoparticles from Cu-/In-xanthates. Dalton Trans. 47 (2018) 5304-5309.

DOI: 10.1039/c8dt00653a

Google Scholar

[31] M. Al-Shakban, P. Matthews, N. Savjani, X. Zhong, Y. Wang, M. Missous, P. O'Brien. The synthesis and characterization of Cu2ZnSnS4 thin films from melt reactions using xanthate precursors. J. Mater. Sci. 52 (2017) 12761-12771.

DOI: 10.1007/s10853-017-1367-0

Google Scholar

[32] A. Fischereder, A. Schenk,T. Rath, W. Haas, S. Delbos, C. Gougaud, N. Naghavi, A. Pateter, R. Saf, D. Schenk. Solution-processed copper zinc tin sulfide thin films from metal xanthate precursors. Monatsh Chem. Chem. Mon. 144 (2013) 273-283.

DOI: 10.1007/s00706-012-0882-6

Google Scholar

[33] N. Alam, M. Hill, G. Kociok-Köhn, M. Zeller, M. Mazhar, K. Molloy. Pyridine adducts of nickel (II) xanthates as single-source precursors for the aerosol-assisted chemical vapor deposition of nickel sulfide. Chem. Mater. 20 (2008) 6157-6162.

DOI: 10.1021/cm801330v

Google Scholar

[34] N. Donoghue, E. Tiekink. Crystal structure of bis (O-isopropyldithiocarbonato)-diphenyltin (IV). J. Organomet. Chem. 42 (1991) 179-184.

DOI: 10.1016/0022-328x(91)80261-h

Google Scholar

[35] M. Ibrahim, S. Chee, M. Buntine, M. Cox, E. Tiekink. Structural variation in diorganotin dimethylxanthates, R2Sn (S2COMe)2: a combined crystallographic and theoretical investigation. Organometallics, 19 (2000) 5410-5415.

DOI: 10.1021/om000717v

Google Scholar

[36] H. Chandrasekhar, R. Humphreys, U. Zwick, M. Cardona. Infrared and Raman spectra of the IV-VI compounds SnS and SnSe. Phys. Rev. B, 15 (1977) 2177.

DOI: 10.1103/physrevb.15.2177

Google Scholar

[37] S. Connor, C. Hsu, B. Weil, S. Aloni, Y. Cui. Phase transformation of biphasic Cu2S− CuInS2 to monophasic CuInS2 nanorods. J. Am. Chem. Soc. 131(2009) 4962-4966.

DOI: 10.1021/ja809901u

Google Scholar