Preparation, Structural, Electrochemical and Photocatalytic Studies of Cadmium Sulfide Quantum Dots

Article Preview

Abstract:

We report the preparation, structural, electrochemical and photocatalytic studies of monodispersed cadmium sulphide quantum dots from didecylaminyl dithiocarbamate and 4-chloro-3-(trifluoromethyl) anilinyl dithiocarbamate cadmium(II) complexes. Powder X-ray diffraction pattern confirms hexagonal crystalline phases for the as-preapred CdS quantum dots irrespective of the precursor used with particle size of 3.39-5.51 nm. Optical absorption band edges of 515 nm were observed for the cadmium sulfide quantum dots with energy band gaps estimated from the Tauc plots of 1.97 eV for OLM-CdS1 prepared from Cd(II) didecylaminyl dithiocarbamate and 1.92 eV for OLM-CdS2 prepared from Cd(II) 4-chloro-3-(trifluoromethyl) anilinyl dithiocarbamate. These energy band gaps are blue shifted with respect to the bulk cadmium sulphide. The calculated electrochemical band gap of 2.34 V and 3.30 V are higher than band gap energy. The as-prepared CdS quantum dots were used as photocatalysts for the photocatalytic decomposition of methylene blue (MB) with efficiency of 61 % and 55 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-111

Citation:

Online since:

February 2021

Export:

Price:

* - Corresponding Author

[1] T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M. Iqbal, Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment, Environ. Int., 122 (2019) 52-66.

DOI: 10.1016/j.envint.2018.11.038

Google Scholar

[2] A. E. Oluwalana, P. A. Ajibade, Structural, optical and photocatalytic studies of hexadecylamine-capped lead sulfide nanoparticles. Int. J. Ind. Chem. (2020). https://doi.org/10.1007/s40090-020-00220-2.

DOI: 10.1007/s40090-020-00220-2

Google Scholar

[3] O. Akpor, D. Otohinoyi, D. Olaolu, B. Aderiye, Pollutants in wastewater effluents: Impacts and remediation processes, Int. J. Environ. Res., 3 (2014) 050-059.

Google Scholar

[4] B. Ayoubi-Feiz, M. Sheydaei, M. Karimi, Visible light photoelectrocatalysis for wastewater treatment using bifacial N-TiO2/Graphene/HO2O3/Titanium nanocomposite: Artificial neural network modeling and evaluation of ozone addition, Process Saf. Environ. Prot., 127 (2019) 56-65.

DOI: 10.1016/j.psep.2019.04.026

Google Scholar

[5] G. Zhou, C. Liu, L. Chu, Y. Tang, S. Luo, Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour Technol 219 (2016) 451-457.

DOI: 10.1016/j.biortech.2016.07.038

Google Scholar

[6] N. Pradeep, S. Anupama, K. Navya, H. Shalini, M. Idris, U. Hampannavar, Biological removal of phenol from wastewaters: A mini review, Appl. Water Sci., 5 (2015) 105-112.

DOI: 10.1007/s13201-014-0176-8

Google Scholar

[7] P. Rokicka-Konieczna, A. Markowska-Szczupak, E. Kusiak-Nejman, A.W. Morawski, Photocatalytic water disinfection under the artificial solar light by fructose-modified TiO2, Chem. Eng. J., 372 (2019) 203-215.

DOI: 10.1016/j.cej.2019.04.113

Google Scholar

[8] L. Deng, Z. Wu, C. Yang, Y.-L. Wang, Photodegradation of trace trichloronitromethane in water under UV irradiation, J. Chem., 2014 (2014) 283496;.

DOI: 10.1155/2014/283496

Google Scholar

[9] H. Zangeneh, A. Zinatizadeh, M. Habibi, M. Akia, M.H. Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review, J. Ind. Eng. Chem., 26 (2015) 1-36.

DOI: 10.1016/j.jiec.2014.10.043

Google Scholar

[10] M. Fendrich, A. Quaranta, M. Orlandi, M. Bettonte, A. Miotello, Solar concentration for wastewaters remediation: A review of materials and technologies, Appl. Sci., 9 (2019) 118.

DOI: 10.3390/app9010118

Google Scholar

[11] S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials, J. Nanomater., 2014 (2014) 617405.

DOI: 10.1155/2014/617405

Google Scholar

[12] S. Zhu, D. Wang, Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities, Adv. Energy Mater., 7 (2017) 1700841.

DOI: 10.1002/aenm.201700841

Google Scholar

[13] S. Balu, K. Uma, G.-T. Pan, T. Yang, S. Ramaraj, Degradation of methylene blue dye in the presence of visible light using SiO2@ α-Fe2O3 nanocomposites deposited on SnS2 flowers, Materials, 11 (2018) 1030;.

DOI: 10.3390/ma11061030

Google Scholar

[14] D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanopart. Res., 1 (1999) 439-458.

Google Scholar

[15] A. Kumar, G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials, Material Sci & Eng Int J. 2017;1(3):106-114.

Google Scholar

[16] S. Krishnan, H. Rawindran, C. Sinnathambi, J. Lim, Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants, in: IOP Conference Series: Materials science and engineering, IOP Publishing, 2017, p.012089.

DOI: 10.1088/1757-899x/206/1/012089

Google Scholar

[17] S.N. Inamdar, P.P. Ingole, S.K. Haram, Determination of Band Structure Parameters and the Quasi‐Particle Gap of CdSe Quantum Dots by Cyclic Voltammetry, ChemPhysChem, 9 (2008) 2574-2579.

DOI: 10.1002/cphc.200800482

Google Scholar

[18] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner's guide to cyclic voltammetry, J. Chem. Educ., 95 (2018) 197-20.

DOI: 10.1021/acs.jchemed.7b00361

Google Scholar

[19] L.L. Mphahlele, P.A. Ajibade, Synthesis and crystal structure of bis(morpholino dithiocarbamato) Cd (II) complex and its use as precursor for CdS quantum dots using different capping agents, J. Sulfur Chem., (2019) 1-16.

DOI: 10.1080/17415993.2019.1637876

Google Scholar

[20] J. Z. Mbese, P. A. Ajibade, Synthesis, structural and optical properties of ZnS, CdS and HgS nanoparticles from dithiocarbamato single molecule precursors. J. Sul. Chem. 35 (2014), 438-449.

DOI: 10.1080/17415993.2014.912280

Google Scholar

[21] J. Osuntokun, P. A. Ajibade, Structural and thermal studies of ZnS and CdS nanoparticles in polymer matrices. J. Nanomater. 2016 (2016) 3296071, https://doi.org/10.1155/2016/3296071.

DOI: 10.1155/2016/3296071

Google Scholar

[22] P.P. Ingole, A consolidated account of electrochemical determination of band structure parameters in II–VI semiconductor quantum dots: A tutorial review, Phys. Chem. Chem. Phys., 21 (2019) 4695-4716.

DOI: 10.1039/c8cp06847j

Google Scholar

[23] R. Rajendran, K. Varadharajan, V. Jayaraman, B. Singaram, J. Jeyaram, Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted Bi2WO6–CdS nanocomposite film under visible light irradiation, Appl. Nanosci., 8 (2018) 61-78.

DOI: 10.1007/s13204-018-0652-9

Google Scholar

[24] D. Ayodhya, M. Venkatesham, A.S. Kumari, G.B. Reddy, D. Ramakrishna, G. Veerabhadram, Synthesis, characterization, fluorescence, photocatalytic and antibacterial activity of CdS nanoparticles using Schiff base, J. fluoresc., 25 (2015) 1481-1492.

DOI: 10.1007/s10895-015-1639-5

Google Scholar

[25] B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique, Chalcogenide Lett, 8 (2011) 177-185.

Google Scholar

[26] O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking, Nat. Mater., 12 (2013) 445.

DOI: 10.1038/nmat3539

Google Scholar

[27] P. áSreekumari Nair, Preparation of CdS nanoparticles using the cadmium (II) complex of N, N'-bis (thiocarbamoyl) hydrazine as a simple single-source precursor, J. Mater. Chem., 11 (2001) 1555-1556.

DOI: 10.1039/b100697p

Google Scholar

[28] Q. Lu, Y. Zhang, S. Liu, Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation, J. Mater. Chem.A, 3 (2015) 8552-8558.

DOI: 10.1039/c5ta00525f

Google Scholar