Scrutiny of Surface Plasmon Resonance Bands of Colloidal Cu and Cu-Ag Nanoparticles in Different Reaction Media for Stability Evaluation

Article Preview

Abstract:

The copper nanoparticles (CuNPs) were developed in two different reaction media (distilled water (DW) and ethylene glycol (EG)) by chemical reduction method using two different stabilizers (polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP)). We carried out a careful examination of the time evolution of surface plasmon resonance (SPR) bands (specifically, peak positions and intensities) of colloidal CuNPs so as to evaluate their stability. In addition, the changing pattern of SPR peak positions and intensities during the stability time period was also investigated. Effects of stabilizer materials, stabilizer concentration, Ag capping and reaction medium on the stability of CuNPs colloids have been highlighted. The maximum stability of CuNPs is 4 hours with stabilizer PEG and is 4 days with PVP in DW. They, with PVP, extend up to 10 days in the different reaction medium (EG). The stability time of CuNPs in EG is further lengthened to 20 days in the presence of Ag capping (Cucore AgshellNPs). Thus a proper selection of the stabilizing/capping agent and the reaction medium is critical in determining the stability of CuNPs colloids. The benefits of stabilization of CuNPs for real world applications are immense and this study would help in examinning the stability of other novel plasmonic metal nanostructures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-121

Citation:

Online since:

May 2018

Export:

Price:

* - Corresponding Author

[1] H.X. Zhang, U. Siegert, R. Liu, W.B. Cai, Facile fabrication of ultrafine copper nanoparticles in organic solvent, Nanoscale Res. Lett. 4 (2009) 705.

DOI: 10.1007/s11671-009-9301-2

Google Scholar

[2] T.M. Dang, T.T. Le, E.F. Blanc, M.C. Dang, Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method, Nanosci. Nanotechnol. 2 (2011) 015009.

DOI: 10.1088/2043-6262/2/1/015009

Google Scholar

[3] C.E. McCold, Q. Fu, J.Y. Howe and J. Hihath, Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays, Nanoscale 7 (2015)14937.

DOI: 10.1039/c5nr04460j

Google Scholar

[4] M. Yao, X. Jia, Y. Liu, W. Guo, L. Shen and S. Ruan, Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer, ACS Appl. Mater. Interfaces 7 (33) (2015) 18866.

DOI: 10.1021/acsami.5b05747

Google Scholar

[5] K. Tiwari, S.C. Sharma and N. Hozhabri, High performance surface plasmon sensors: Simulations and measurements, J. Appl. Phys. 118 (2015) 093105.

DOI: 10.1063/1.4929643

Google Scholar

[6] P. Pandey, S.K. Arya, Z. Matharu, S.P. Singh, M. Datta and B.D. Malhotra, Polythiophene gold nanoparticles composite film for application to glucose sensor, J. Appl. Polym. Sci. 110(2) (2008) 988.

DOI: 10.1002/app.28738

Google Scholar

[7] P.A. DeSario, J.J. Pietron, T.H. Brintlinger, M. McEntee, J.F. Parker, O. Baturina, R.M. Stroud and D.R. Rolison, Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitectures , Nanoscale 9 (2017) 11720.

DOI: 10.1039/c7nr04805j

Google Scholar

[8] T.Z. Oo, N. Mathews, G. Xing, B. Wu, B. Xing, L.H. Wong, T.C. Sum and S.G. Mhaisalkar, Ultrafine gold nanowire networks as plasmonic antennae in organic photovoltaics J. Phys. Chem. C 116 (10) (2012) 6453.

DOI: 10.1021/jp2099637

Google Scholar

[9] P. Shen, Y. Liu, Y. Long, L. Shen and B. Kang, High-performance polymer solar cells enabled by copper nanoparticles-induced plasmon resonance enhancement, J. Phys. Chem. C 120 (16) (2016) 8900.

DOI: 10.1021/acs.jpcc.6b02802

Google Scholar

[10] N.A. Dhas, C.P. Raj, A. Gedanken, Synthesis, characterization, and properties of metallic copper nanoparticles, J. Chem. Mater. 10 (1998) 1446.

DOI: 10.1021/cm9708269

Google Scholar

[11] V.G. Dan, M. Egon, Preparation of monodispersed metal particles, J. Chem. 22 (1998) 1203.

Google Scholar

[12] A.Umer, S. Naveed, N. Ramzan, Selection of a suitable method for the synthesis of copper nanoparticles, Nano: Brief Reports and Reviews, 7 (2012) 1230005.

DOI: 10.1142/s1793292012300058

Google Scholar

[13] P. Reineck, D. Brick, P. Mulvaney and U. Bach, Plasmonic hot electron solar cells: The effect of nanoparticle size on quantum efficiency, J. Phys. Chem. Lett. 7(20) (2016) 4137.

DOI: 10.1021/acs.jpclett.6b01884

Google Scholar

[14] C.E. McCold, Q. Fu, S. Hihath, J. Han, Y. Halfon, R. Faller, K.v. Benthem, L. Zang and J. Hihath, Ligand exchange based molecular doping in 2D hybrid molecule-nanoparticle arrays: length determines exchange efficiency and conductance, Mol. Syst. Des. Eng. 2 (2017).

DOI: 10.1039/c7me00033b

Google Scholar

[15] T. Yamaguchi, E. Kazuma, N. Sakai and T. Tatsuma, Photoelectrochemical responses from polymer-coated plasmonic copper nanoparticles on TiO2, Chem. Lett. 41 (2012) 1340.

DOI: 10.1246/cl.2012.1340

Google Scholar

[16] J. A. Jiménez, Carbon as reducing agent for the precipitation of plasmonic Cu particles in glass, J. Alloys Compd. 656 (2016) 685.

DOI: 10.1016/j.jallcom.2015.10.009

Google Scholar

[17] X.N. Guo, C.H. Hao, G. Q. Jin, H.-Y. Zhu and X.-Y. Guo, Copper nanoparticles on graphene support: an efficient photocatalyst for coupling of nitroaromatics in visible light, Angew. Chem., Int. Ed. 53 (2014) (1973).

DOI: 10.1002/anie.201309482

Google Scholar

[18] C.Y. Huang, S.R. Sheen, Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape, J. Mater. Lett. 30 (1997) 357.

DOI: 10.1016/s0167-577x(96)00224-8

Google Scholar

[19] T.M. Dang, T.T. Le, E.F. Blanc, M.C. Dang, The influence of solvents and surfactants on the preparation of copper nanoparticles by chemical reduction method, Nanosci. Nanotechnol. 2 (2011) 025004.

DOI: 10.1088/2043-6262/2/2/025004

Google Scholar

[20] Y. Jianfeng, Z. Guisheng, H. Anming, Y.N. Zhou, Preparation of PVP coated CuNPs and the application for low-temperature bonding, J. Mater. Chem. 21 (2011) 15981.

DOI: 10.1039/c1jm12108a

Google Scholar

[21] R.A. Soomro, S.T. Sherazi, S.N. Memon, Synthesis of air stable copper nanoparticles and their use in catalysis, Adv. Mater. Lett. 5 (2014) 191.

DOI: 10.5185/amlett.2013.8541

Google Scholar

[22] M. Crouchko, A. Kamshny, S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem. 19 (2009) 3057.

DOI: 10.1039/b821327e

Google Scholar