Effect of Synthesis Temperature on Particles Size and Morphology of Zirconium Oxide Nanoparticle

Article Preview

Abstract:

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-31

Citation:

Online since:

November 2017

Export:

Price:

* - Corresponding Author

[1] T. M. Arantes, G. P. Mambrini, D. G. Stroppa, E. R. Leite, E. Longo, A. J. Ramirez, et al., Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process, Journal of Nanoparticle Research, vol. 12, pp.3105-3110, (2010).

DOI: 10.1007/s11051-010-9906-5

Google Scholar

[2] A. S. Keiteb, E. Saion, A. Zakaria, and N. Soltani, Structural and Optical Properties of Zirconia Nanoparticles by Thermal Treatment Synthesis, Journal of Nanomaterials, vol. 2016, (2016).

DOI: 10.1155/2016/1913609

Google Scholar

[3] D. Harrison, N. Melamed, and E. Subbarao, A New Family of Self‐Activated Phosphors, Journal of the Electrochemical Society, vol. 110, pp.23-28, (1963).

DOI: 10.1149/1.2425665

Google Scholar

[4] H. Wang, G. Li, Y. Xue, and L. Li, Hydrated surface structure and its impacts on the stabilization of t-ZrO 2, Journal of Solid State Chemistry, vol. 180, pp.2790-2797, (2007).

DOI: 10.1016/j.jssc.2007.08.015

Google Scholar

[5] S. Jayakumar, P. Ananthapadmanabhan, T. Thiyagarajan, K. Perumal, S. Mishra, G. Suresh, et al., Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders, Materials Chemistry and Physics, vol. 140, pp.176-182, (2013).

DOI: 10.1016/j.matchemphys.2013.03.018

Google Scholar

[6] P. Manivasakan, V. Rajendran, P. Ranjan Rauta, B. Bandhu Sahu, and B. Krushna Panda, Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon, Journal of the American Ceramic Society, vol. 94, pp.1410-1420, (2011).

DOI: 10.1111/j.1551-2916.2010.04277.x

Google Scholar

[7] J. -R. Kim, W. -J. Myeong, and S. -K. Ihm, Characteristics in oxygen storage capacity of ceria–zirconia mixed oxides prepared by continuous hydrothermal synthesis in supercritical water, Applied Catalysis B: Environmental, vol. 71, pp.57-63, (2007).

DOI: 10.1016/j.apcatb.2006.08.015

Google Scholar

[8] M. Gateshki, V. Petkov, T. Hyeon, J. Joo, M. Niederberger, and Y. Ren, Interplay between the local structural disorder and the length of structural coherence in stabilizing the cubic phase in nanocrystalline ZrO 2, Solid state communications, vol. 138, pp.279-284, (2006).

DOI: 10.1016/j.ssc.2006.03.013

Google Scholar

[9] R. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, The Journal of Physical Chemistry, vol. 82, pp.218-224, (1978).

DOI: 10.1021/j100491a016

Google Scholar

[10] O. Vasylkiv and Y. Sakka, Synthesis and colloidal processing of zirconia nanopowder, Journal of the American Ceramic Society, vol. 84, pp.2489-2494, (2001).

DOI: 10.1111/j.1151-2916.2001.tb01041.x

Google Scholar

[11] L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid, The Journal of Physical Chemistry C, vol. 115, pp.9370-9375, (2011).

DOI: 10.1021/jp111367k

Google Scholar

[12] R. A. Sigwadi, S. E. Mavundla, N. Moloto, and T. Mokrani, Synthesis of zirconia-based solid acid nanoparticles for fuel cell application, Journal of Energy in Southern Africa, vol. 27, pp.60-67, (2016).

DOI: 10.17159/2413-3051/2016/v27i2a1342

Google Scholar

[13] M. Bocanegra-Bernal and S. D. De La Torre, Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics, Journal of materials science, vol. 37, pp.4947-4971, (2002).

DOI: 10.1023/a:1021099308957

Google Scholar

[14] C. Piconi and G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials, vol. 20, pp.1-25, (1999).

DOI: 10.1016/s0142-9612(98)00010-6

Google Scholar

[15] D. Tan, G. Lin, Y. Liu, Y. Teng, Y. Zhuang, B. Zhu, et al., Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation, Journal of Nanoparticle Research, vol. 13, pp.1183-1190, (2011).

DOI: 10.1007/s11051-010-0110-4

Google Scholar

[16] Y. Cong, B. Li, S. Yue, D. Fan, and X. -j. Wang, Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction, The Journal of Physical Chemistry C, vol. 113, pp.13974-13978, (2009).

DOI: 10.1021/jp8103497

Google Scholar

[17] X. Xu and X. Wang, Fine tuning of the sizes and phases of ZrO2 nanocrystals, Nano Research, vol. 2, pp.891-902, (2009).

Google Scholar

[18] T. Rajh, M. Peterson, J. Turner, and A. Nozik, Size quantization in small colloidal CdS particles studied with stopped flow spectrometry, Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 228, pp.55-68, (1987).

DOI: 10.1016/0022-0728(87)80096-7

Google Scholar

[19] M. Rezaei, S. Alavi, S. Sahebdelfar, Z. -F. Yan, H. Teunissen, J. Jacobsen, et al., Synthesis of pure tetragonal zirconium oxide with high surface area, Journal of materials science, vol. 42, pp.1228-1237, (2007).

DOI: 10.1007/s10853-006-0079-7

Google Scholar

[20] M. Tahmasebpour, A. Babaluo, and M. R. Aghjeh, Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method, Journal of the European Ceramic Society, vol. 28, pp.773-778, (2008).

DOI: 10.1016/j.jeurceramsoc.2007.09.018

Google Scholar

[21] F. Davar, A. Hassankhani, and M. R. Loghman-Estarki, Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method, Ceramics International, vol. 39, pp.2933-2941, (2013).

DOI: 10.1016/j.ceramint.2012.09.067

Google Scholar

[22] A. Navrotsky, Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles, Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp.12096-12101, (2004).

DOI: 10.1073/pnas.0404778101

Google Scholar

[23] A. Indarto, J. -W. Choi, H. Lee, and H. K. Song, A review of C1 chemistry synthesis using yttrium-stabilized zirconia catalyst, Journal of Rare Earths, vol. 26, pp.1-6, (2008).

DOI: 10.1016/s1002-0721(08)60026-5

Google Scholar

[24] A. Adamski, P. Jakubus, and Z. Sojka, Synthesis of nanostructured tetragonal ZrO2 of enhanced thermal stability, Nukleonika, vol. 51, pp.27-33, (2006).

Google Scholar

[25] A. Christensen and E. A. Carter, First-principles study of the surfaces of zirconia, Physical Review B, vol. 58, p.8050, (1998).

Google Scholar

[26] L. A. Pérez-Maqueda and E. Matijević, Preparation and characterization of nanosized zirconium (hydrous) oxide particles, Journal of materials research, vol. 12, pp.3286-3292, (1997).

DOI: 10.1557/jmr.1997.0432

Google Scholar

[27] M. Jansen and E. Guenther, Oxide gels and ceramics prepared by a nonhydrolytic sol-gel process, Chemistry of materials, vol. 7, pp.2110-2114, (1995).

DOI: 10.1021/cm00059a019

Google Scholar

[28] C. Y. Tai, B. -Y. Hsiao, and H. -Y. Chiu, Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 237, pp.105-111, (2004).

DOI: 10.1016/j.colsurfa.2004.02.014

Google Scholar

[29] P. Piszczek, A. Radtke, A. Grodzicki, A. Wojtczak, and J. Chojnacki, The new type of [Zr 6 (μ 3-O) 4 (μ 3-OH) 4] cluster core: Crystal structure and spectral characterization of [Zr 6 O 4 (OH) 4 (OOCR) 12](R= Bu t, C (CH 3) 2 Et), Polyhedron, vol. 26, pp.679-685, (2007).

DOI: 10.1016/j.poly.2006.08.025

Google Scholar

[30] M. Yashima, T. -a. Kato, M. Kakihana, M. A. Gulgun, Y. Matsuo, and M. Yoshimura, Crystallization of hafnia and zirconia during the pyrolysis of acetate gels, Journal of materials research, vol. 12, pp.2575-2583, (1997).

DOI: 10.1557/jmr.1997.0342

Google Scholar

[31] M. Manrıquez, T. López, R. Gómez, and J. Navarrete, Preparation of TiO 2–ZrO 2 mixed oxides with controlled acid–basic properties, Journal of Molecular Catalysis A: Chemical, vol. 220, pp.229-237, (2004).

DOI: 10.1016/j.molcata.2004.06.003

Google Scholar

[32] G. Chuah, S. Jaenicke, and B. Pong, The preparation of high-surface-area zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia, Journal of catalysis, vol. 175, pp.80-92, (1998).

DOI: 10.1006/jcat.1998.1980

Google Scholar

[33] H. -J. Noh, D. -S. Seo, H. Kim, and J. -K. Lee, Synthesis and crystallization of anisotropic shaped ZrO 2 nanocrystalline powders by hydrothermal process, Materials Letters, vol. 57, pp.2425-2431, (2003).

DOI: 10.1016/s0167-577x(02)01248-x

Google Scholar

[34] C. M. Zimmerman, A. Singh, and W. J. Koros, Tailoring mixed matrix composite membranes for gas separations, Journal of Membrane Science, vol. 137, pp.145-154, (1997).

DOI: 10.1016/s0376-7388(97)00194-4

Google Scholar

[35] M. Alaei, A. M. Rashidi, and I. Bakhtiari, Preparation of High Surface Area ZrO2 Nanoparticles, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), vol. 33, pp.47-53, (2014).

Google Scholar

[36] S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange, Nanoscale research letters, vol. 10, pp.1-13, (2015).

DOI: 10.1186/s11671-015-0780-z

Google Scholar

[37] N. Zhao, D. Pan, W. Nie, and X. Ji, Two-phase synthesis of shape-controlled colloidal zirconia nanocrystals and their characterization, Journal of the American Chemical Society, vol. 128, pp.10118-10124, (2006).

DOI: 10.1021/ja0612145

Google Scholar

[38] E. Gil, Á. Mas, C. Lerma, and J. Vercher, Exposure factors influence stone deterioration by crystallization of soluble salts, Advances in Materials Science and Engineering, vol. 2015, (2015).

DOI: 10.1155/2015/348195

Google Scholar

[39] S. Wang, Z. Tan, Y. Li, L. Sun, and T. Zhang, Synthesis, characterization and thermal analysis of polyaniline/ZrO 2 composites, Thermochimica Acta, vol. 441, pp.191-194, (2006).

DOI: 10.1016/j.tca.2005.05.020

Google Scholar

[40] A. Clearfield, Structural aspects of zirconium chemistry, Reviews of Pure and Applied Chemistry (Australia), vol. 14, (1964).

Google Scholar

[41] M. Navarra, C. Abbati, and B. Scrosati, Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane, Journal of power sources, vol. 183, pp.109-113, (2008).

DOI: 10.1016/j.jpowsour.2008.04.033

Google Scholar