Synthesis of Cadmium Sulfide Nanoparticles by Biomass of Fusarium oxysporum f. sp. lycopersici

Article Preview

Abstract:

This study describes extracellular biosynthesis of cadmium sulfide quantum dots by Fusarium oxysporum f. sp. lycopersici. Mycelia was incubated with a cadmium sulfate solution at 30°C and after 12 days the mixture became yellow, then the biomass was discarded through paper filtration. The filtrate containing extracellular cadmium sulfide quantum dots displayed increased UV-Vis absorption from 300 - 500 nm and fluorescence at 520 nm which was not shown when incubated without cadmium sulfide, thus indicating the presence of biologically synthesized quantum dots. Transmission electron microscope analysis of biologically synthesized quantum dots evinced individual 2 - 6 nm diameter circular nanoparticles of uniform size. Energy dispersive spectroscopy confirmed the presence of S and Cd. Additionally, this study showed the relevance in the use of positive and negative controls when evaluating the biosynthesis of CdS quantum dots using UV-Vis and fluorescence spectrophotometry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-191

Citation:

Online since:

March 2017

Export:

Price:

* - Corresponding Author

[1] X. Li, H. Xu, Z. -S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications, J. Nanomat., 2011 (2011) 16.

Google Scholar

[2] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects and photophysical properties, J. Phys. Chem., 95 (1991) 525-532.

DOI: 10.1021/j100155a009

Google Scholar

[3] D. Bera, L. Qian, T. -K. Tseng, P. H. Holloway, Quantum dots and their multimodal applications: A Review, Materials, 3 (2010) 2260-2345.

DOI: 10.3390/ma3042260

Google Scholar

[4] A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 89 (1989) 1861-1873.

DOI: 10.1021/cr00098a010

Google Scholar

[5] C.P. Poole, F.J. Owens, Introduction to Nanotechnology, 1 ed., Wiley-Interscience, New Jersey, (2003).

Google Scholar

[6] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nanopart. Res., 10 (2008) 507-517.

DOI: 10.1007/s11051-007-9275-x

Google Scholar

[7] T. M. Samir, M.M. Mansour, S.C. Kazmierczak, H.M.E. Azzazy, Quantum dots: heralding a brighter future for clinical diagnostics, Nanomedicine, 7 (2012) 1755-1769.

DOI: 10.2217/nnm.12.147

Google Scholar

[8] R. Sanghi, P. Verma, A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus, Chem. Eng. J., 155 (2009) 886-891.

DOI: 10.1016/j.cej.2009.08.006

Google Scholar

[9] R. Narayanan, B.N. Reddy, M. Deepa, Facile charge propagation in CdS quantum dot cells, J. Phys. Chem. C, 116 (2012) 7189-7199.

DOI: 10.1021/jp211200f

Google Scholar

[10] K. Prirsch, J. Garbaye, Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter, Ann. For. Sci., 68 (2011) 25-32.

DOI: 10.1007/s13595-010-0004-8

Google Scholar

[11] J. Bai, Z. Zhang, Y. Guo, W. Jia, Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides, Nanoscale Res. Lett., 4 (2009) 717-723.

DOI: 10.1007/s11671-009-9303-0

Google Scholar

[12] R.Y. Sweeney, C. Mao, X. Gao, J.L. Burt, A.M. Belcher, G. Georgiu, B. L. Iverson, Bacterial biosynthesis of cadmium sulfide nanocrystals, Chem. Biol. (Oxford, UK), 11 (2004) 1553-1559.

DOI: 10.1016/j.chembiol.2004.08.022

Google Scholar

[13] A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum, J. Am. Chem. Soc., 124 (2002) 12108-12109.

DOI: 10.1021/ja027296o

Google Scholar

[14] C. Carbonell, D. Cifuentes, J. Tello Marquina, J.L. Cenis Anadón, Diferenciación de Fusarium oxysporum f. sp. lycopersici y F. o. f. sp. radicis-lycopersici y su detección en planta mediante marcadores RAPD, Boletín de Sanidad Vegetal Plagas (in Spanish), 20 (1994).

DOI: 10.1111/j.1439-0434.1994.tb00026.x

Google Scholar

[15] J. Guarro, J. Gené, A. M. Stchigel, Developments in fungal taxonomy, Clin. Microb. Rev., 12 (1999) 454–500.

DOI: 10.1128/cmr.12.3.454

Google Scholar

[16] L. Reyes, I. Gómez, Biosynthesis of CdS and ZnS nanoparticles by fungi biomass, Mat. Sci. Technol. Conf. Exhib. (2010) 107-118.

Google Scholar

[17] L.R. Reyes, I. Gómez, M. T. Garza, Biosynthesis of cadmium sulfide nanoparticles by the fungi Fusarium sp., Int. J. Green Nanotechnol., 1 (2009) B90-B95.

Google Scholar

[18] A.S. Bhadwal, R.M. Tripathi, R.K. Gupta, N. Kumar, R.P. Singh, A. Shrivastav, Biogenic synthesis and photocatalytic activity of CdS nanoparticles, RSC Adv., 4 (2014) 9484–9490.

DOI: 10.1039/c3ra46221h

Google Scholar

[19] M. Borovaya, Y. Pirko, T. Krupodorova, A. Naumenko, Y. Blume, A. Yemets, Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq. ) P. Kumm, Biotechnol. Biotechnol. Equip., 29 (2015) 1156-1163.

DOI: 10.1080/13102818.2015.1064264

Google Scholar

[20] G. Chen, B. Yi, G. Zeng, Q. Niu, M. Yan, A. Chen, J. Du, J. Huang, Q. Zhang, «Facile green extracellular biosynthesis of CdS quantum dots by whiterot fungus Phanerochaete chrysosporium, Colloids Surf. B, 117 (2014) 199-205.

DOI: 10.1016/j.colsurfb.2014.02.027

Google Scholar

[21] H. Weller , H.M. Schmidt, U. Koch, A. Fojtik, S. Baral, A. Henglein, W. Kunath, K. Weiss, E. Dieman, Photochemistry of colloidal semiconductors onset of light absorption as a function of size of extremelly small CdS particles, Chem. Phys. Lett., 124 (1986).

DOI: 10.1016/0009-2614(86)85075-8

Google Scholar

[22] H. Tang, M. Yan, H. Zhang, M. Xia, D. Yang, Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine, Mat. Lett., 59 (2005) 1024-1027.

DOI: 10.1016/j.matlet.2004.11.049

Google Scholar

[23] L. -Y. Wang, L. Wang, F. Gao, Z. -Y. Yu, Z. -M. Wu, Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids, Analyst (Cambridge, U. K. ), 127 (2002) 977-980.

DOI: 10.1039/b200253c

Google Scholar

[24] S. Mirzadeh, E. Darezereshki, F. Bakhtiari, M.H. Fazaelipoor, M. R. Hosseini, Characterization of zinc sulfide (ZnS) nanoparticles biosynthesized by Fusarium oxysporum, Mat. Sci. Semicond. Proc., 16 (2013) 374-378.

DOI: 10.1016/j.mssp.2012.09.008

Google Scholar

[25] L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, R. Jayavel, Synthesis, structural and optical propertiesof PVP encapsulated CdS nanoparticles, Nanomatt. Nanotechnol., 1 (2011) 42-48.

DOI: 10.5772/50959

Google Scholar

[26] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem., 72 (1976) 248-254.

DOI: 10.1016/0003-2697(76)90527-3

Google Scholar

[27] A. Datta, A. Saha, A. K. Sinha, S.N. Bhattacharyya, S. Chatterjee, Synthesis of CdS nanoparticles in colloidal state and its possible interaction with tyrosine, J. Photochem. Photobiol. B, 78 (2005) 69-74.

DOI: 10.1016/j.jphotobiol.2004.10.001

Google Scholar

[28] H. -J. Bai, Z. -M. Zhang, J. Gong, Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides, Biotechnol. Lett., 28 (2006) 1135-1139.

DOI: 10.1007/s10529-006-9063-1

Google Scholar

[29] J.D. Holmes, D.J. Richardson, S. Saed, R. Evans-Gowing, D.A. Russell, J.R. Sodeau, Cadmium-specific formation of metal sulfide Q-particles, by Klebsiella pneumoniae, Microbiology, 143 (1997) 2521-2530.

DOI: 10.1099/00221287-143-8-2521

Google Scholar

[30] R.A. Mousavi, M.R. Fazeli, A. A. Sepahy, Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using Enterobacteriaceae and their application, Proc. 01PCN30 Applications and Properties, 1 (2012) 1-5.

Google Scholar

[31] E.J. Dell, F. Ganske, Detection of NADH and NADPH with the omega's high speed, full UV/Vis absorbance spectrometer, BMG Labtech, 170 (2008).

Google Scholar

[32] F. -X. Schmid, Biological Macromolecules: UV-visible Spectrophotometry, Encyclopedia of Life Sciences, John Wiley & Sons, Ltd, Bayreuth, (2001).

Google Scholar

[33] A. Aitken, M.P. Learmonth, The Protein Protocols Handbook, 2o ed., Humana Press Inc., New Jersey, (2002).

Google Scholar

[34] N. Duran, P.D. Marcato, O.L. Alves, G.I. de Souza, E. Esposito, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains, J. Nanobiotechnol., 3 (2005) 1-7.

DOI: 10.1186/1477-3155-3-8

Google Scholar

[35] M.T. Madigan, J.M. Martinko, J. Parker, Brock. Biología de los Microorganismos, 10ª ed., Pearson Educación, Madrid, (2004).

Google Scholar

[36] C.K. Mathews, K.E. van Holde, K. G. Ahern, Bioquímica, 3 ed., Pearson Educación, Madrid, (2002).

Google Scholar

[37] I.S. Pretorius, Ed., Handbook of Fungal Biotechnology, 2a ed., Marcel Dekker Inc., New York, (2004).

Google Scholar

[38] L.A. Hadwiger, M. -M. Chang, M.A. Parsons, Fusarium solani DNase is a signal for increasing expression of nonhost disease resistance response genes, hypersensitivity, and pisatin production., Mol. Plant. Microbe Interact., 8 (1995) 871-879.

DOI: 10.1094/mpmi-8-0871

Google Scholar

[39] M.K. Jashni, I. H. Dols, Y. Iida, S. Boeren, H.G. Beenen, R. Mehrabi, J. Collemare, de P.J.G.M. de Wit, Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity, and enhances fungal virulence, Mol. Plant. Microbe Interact., 28 (2015).

DOI: 10.1094/mpmi-04-15-0074-r

Google Scholar

[40] R.A. Bernhoft, Cadmium Toxicity and Treatment, Sci. World. J., 2013 (2013) 1-7.

Google Scholar

[41] J. Sedlak, R.H. Lindsay, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent, Anal. Biochem., 25 (1968) 192-205.

DOI: 10.1016/0003-2697(68)90092-4

Google Scholar

[42] E. Biasutti, L.M. De Marco, W.O. Afonso, V.D. Silva, D. Lopes, M. Silvestre, Utilización de dos soportes para la inmovilización de la papaína, Ars Pharm., 47 (2006) 425-435.

Google Scholar

[43] C.D. Georgiou, N. Patsoukis, I. Papapostolou, G. Zervoudakis, Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress, Integr. Comp. Biol., 46 (2006) 691-712.

DOI: 10.1093/icb/icj034

Google Scholar

[44] J.F. Gonçalves, A.G. Becker, D. Cargnelutti, L.A. Tabaldi, L.B. Pereira, V. Battisti, R.M. Spanevello, V.M. Morsch, F.T. Nicoloso, M.R.C. Schetinger, Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings, Braz. J. Plant Physiol., 19 (2007).

DOI: 10.1590/s1677-04202007000300006

Google Scholar

[45] W. Bae, R.K. Mehra, Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites, J. Inorg. Biochem., 69 (1998) 33-43.

DOI: 10.1016/s0162-0134(97)10006-x

Google Scholar

[46] R.K. Singhal, M.E. Anderson, A. Meister, Glutathione, a first line of defense against cadmium toxicity, Faseb J., 1 (1987) 220-223.

DOI: 10.1096/fasebj.1.3.2887478

Google Scholar

[47] L. Qi, H. Cölfen, M. Antonietti, Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers, Nano Lett., 1 (2001) 61-65.

DOI: 10.1021/nl0055052

Google Scholar

[48] C.T. Dameron, R.N. Reese, R.K. Mehra, A.R. Kortan, P.J. Carroll, M.L. Steigerwald, L.E. Brus, D.R. Winge, Biosynthesis of cadmium sulphide quantum semiconductor crystallites, Nature, 338 (1989) 596-597.

DOI: 10.1038/338596a0

Google Scholar

[49] A. El-Raheem, R. El-Shanshoury, S.E. Elsik, M.E. Ebeid, Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T, African J. Biotech, 11 (2012).

DOI: 10.5897/ajb11.3708

Google Scholar

[50] J.S. Bartlett, K.J. Voss, S. Sathyendranath, A. Vodacek, Raman scattering by pure water and seawater, App. Opt., 37 (1998) 3324-3332.

DOI: 10.1364/ao.37.003324

Google Scholar

[51] A.J. Lawaetz, C.A. Stedmon, Fluorescence intensity calibration using the Raman scatter peak of water, Appl. Spectrosc., 63 (2009) 936-940.

DOI: 10.1366/000370209788964548

Google Scholar

[52] W. Bae, R. Abdullah, D. Henderson, R.K. Mehra, Characteristics of glutathione-capped ZnS nanocrystallites, Biochem. Biophys. Res. Commun., 237 (1997) 16-23.

DOI: 10.1006/bbrc.1997.7062

Google Scholar

[53] D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Química Analítica, 8 ed., Thomson, México D.F., (2005).

Google Scholar

[54] J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F. Wu, J.Z. Zhang, T. Hyeon, Generalized and facile synthesis of semiconducting metal sulfide nanocrystals, J. Am. Chem. Soc., 125 (2003) 11100-11105.

DOI: 10.1021/ja0357902

Google Scholar

[55] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis, Nature, 437 (2005) 121-124.

DOI: 10.1038/nature03968

Google Scholar

[56] C. Wang, A. Lum, S. Ozuna, D. Clark, J. Keasling, Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene, Appl. Microbiol. Biotechnol., 56 (2001) 425-430.

DOI: 10.1007/s002530100660

Google Scholar

[57] V. López-Gayou, B. Salazar-Hernández, G. Zavala, P. Santiago, J.A. Ascencio, SEM and HRTEM analysis of ZnS nanoflakes produced by a simple route, Appl. Phys. A: Mater. Sci. Process., 94 (2009) 735-738.

DOI: 10.1007/s00339-008-5063-4

Google Scholar

[58] S. Martínez, T. Serrano, I. Gómez, A. Hernández, Síntesis y caracterización de nanoparticulas de CdS obtenidas por microondas, Boletín de la Sociedad Española de Cerámica y Vidrio (in Spanish), 46, 2 (2007) 97-101.

DOI: 10.3989/cyv.2007.v46.i2.256

Google Scholar