Effect of Pd Addition on the Nanostructure and Properties of Pd/TiO2 Catalysts for the Photocatalytic Degradation of 4-Chlorophenol

Article Preview

Abstract:

In this work, the effect of Pd addition on nanostructured TiO2 powders is studied. The materials were obtained by the sol-gel method and characterized by XRD, Rietveld refinement, TEM, Raman and UV-vis spectroscopies. The crystal structure and the nature of the different TiO2 phases were modified by varying the palladium/TiO2 ratio: 0.01, 0.03, and 0.05. The XRD results revealed the presence of different combinations of TiO2 (B), anatase, rutile and PdO phases as well as their coexistence in the different samples. The Rietveld analysis showed that the composition of the phases is rather affected by the amount of Pd added to the TiO2 structure. The Raman spectroscopy confirmed the characteristic bands of the TiO2 phases in the samples and their variation depending on the Pd/TiO2 ratio. The TEM results indicated that the as-prepared samples displayed crystal sizes of nanometric order (˂ 80nm). The observed reduction of the band gap was also correlated with the combination of phases due to the palladium addition. All the Pd/TiO2 samples showed a significant improvement in the elimination of 4-chlorophenol during the application of water treatment technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-20

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] D.F. Ollis. Photocatalytic Purification of water and air. Elsevier, Amsterdam (1993).

Google Scholar

[2] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann. Environmental application of semiconductor photocatalysis. Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[3] K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis: A Historical Overiview and Future Prospects. Jpn. J. Appl. Phys. 44 (2005) 8269-8285.

DOI: 10.1143/jjap.44.8269

Google Scholar

[4] M. Hussain, R. Ceccarelli. N. Russo. Synthesis, characterization, and photocatalytic application of novel TiO2 nanoparticles. Chem. Eng. J. 157 (2010) 45-51.

DOI: 10.1016/j.cej.2009.10.043

Google Scholar

[5] Y. Hu, H-L. Tsai, C.-L- Huang. Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A 344 (2003) 209-214.

Google Scholar

[6] R. Marchand, L. Brohan, M. Tournoux. TiO2 (B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mat. Res. Bull. 15 (1980) 1129-1133.

DOI: 10.1016/0025-5408(80)90076-8

Google Scholar

[7] J. F. Banfield, D.R. Veblen. D. J. Smith. The identification of naturally occurring TiO2(B) by structure determination using high-resolution electron microscopy, image simulation, and distance-least-squares refinement. Am. Miner. 76 (1991) 343-353.

Google Scholar

[8] G. Armstrong, A. R. Armostrong, P. G. Bruce, P. Reale, B. Scrosati. TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte. Adv. Mater. 18 (2006) 2597-2600.

DOI: 10.1002/adma.200601232

Google Scholar

[9] H-F. Yu, S-T. Yang. Enhancing thermal stability and photocatalytic activity of anatase-TiO2 nanoparticles by co-doping P and Si elements. J. Alloy. Compd. 492 (2010) 695-700.

DOI: 10.1016/j.jallcom.2009.12.021

Google Scholar

[10] K. Naeem, F. Ouyang. Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Physica B 405 (2010) 221-226.

DOI: 10.1016/j.physb.2009.08.060

Google Scholar

[11] R. R. Bacsa, J. Kiwi. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid. Appl. Catal. B: Environ. 16 (1988) 19-22

DOI: 10.1016/s0926-3373(97)00058-1

Google Scholar

[12] J. M. Warson, A.T. Cooper, J. R. V. Flora. Nanoglued titanium dioxide aerogels for photocatalysis. Environ. Eng. Sci. 22 (2005) 666-675.

DOI: 10.1089/ees.2005.22.666

Google Scholar

[13] M. C. Yan, F. Chen, J. L. Zhang, M. Anpo. Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B 109 (2005) 8673-8678.

DOI: 10.1021/jp046087i

Google Scholar

[14] X. W. Wang, X. P. Gao, G. R. Li, L. Gao, T. Y. Yan. Ferromagnetism of Co-doped TiO2(B) nanotubes. Appl. Phys. Lett. 91 (2007) 143102-143111

Google Scholar

[15] C. Su, B. Y. Hong, C. M. Tseng. Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today 96 (2006) 119-126.

DOI: 10.1016/j.cattod.2004.06.132

Google Scholar

[16] H. Ou, S. Lo. Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. J. Mol. Catal. A: Chem. 275 (2007) 200-205.

DOI: 10.1016/j.molcata.2007.05.044

Google Scholar

[17] R. López, R. Gomez, M. E. Llanos. Photophysical properties of nanosized copper-doped titania sol-gel catalysts. Catal. Today 148 (2009) 103-108.

DOI: 10.1016/j.cattod.2009.04.001

Google Scholar

[18] Y. Z. Yang, C. –H. Chang, H. Idriss. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Appl. Catal. B Env. 67 (2006) 217-222.

DOI: 10.1016/j.apcatb.2006.05.007

Google Scholar

[19] S. Sakthivel, M. V. Shankar, M. Palanichamy, B, Aranbindoo, V. Murugesan. Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res. 38 (2004) 3001-3008.

DOI: 10.1016/j.watres.2004.04.046

Google Scholar

[20] K. M. Parida, N. Sahu. Visible light induced photocatalytic activity of rare earth titania nanocomposites. J. Mol. Catal. A: Chem. 287 (2008) 151-158.

DOI: 10.1016/j.molcata.2008.02.028

Google Scholar

[21] H-L. Kuo, C-Y. Kuo, C-H. Liu, J-H. Chao. A highly active bi-crystalline photocatalyst consisting of TiO2(B) nanotube and anatase particle for producing H2 gas from neat ethanol. Catal. Lett. 113 (2007) 7-12.

DOI: 10.1007/s10562-006-9009-1

Google Scholar

[22] L. Brohan, A. Verbaere, M. Tournoux, G. Demazeau. La transformation TiO2(B)-anatase. Mat. Res. Bull. 17 (1982) 355-361.

DOI: 10.1016/0025-5408(82)90085-x

Google Scholar

[23] H. M. Rietveld. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22 (1967) 151-152.

DOI: 10.1107/s0365110x67000234

Google Scholar

[24] P. Bose, S-K. Pradhan, S. Sen. Rietveld analysis of polymorphic transformations of ball milled anatase TiO2. Mater. Chem. Phys. 80 (2003) 73-81.

DOI: 10.1016/s0254-0584(02)00463-7

Google Scholar

[25] R. A. Young, D. B. Wiles. Profile shape functions in Rietveld refinements. J. Appl. Crystallogr. 15 (1982) 430-438.

DOI: 10.1107/s002188988201231x

Google Scholar

[26] C-J. Huang, F-M. Pan, I-C- Chang. Enhanced photocatalytic decomposition of methylene blue by the heterostructure of PdO nanoflakes and TiO2 nanoparticles. Appl. Surf. Sci. 263 (2012) 345-351.

DOI: 10.1016/j.apsusc.2012.09.058

Google Scholar

[27] R. Sasikala, A. R. Shirole, V. Sudarsan, Jagannath, C. Sudakar, R. Naik, R. Rao, S. R. Bharadwaj. Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2-Pd nanocomposites for hydrogen generation. Appl. Catal. A-Gen. 377 (2010) 47-54.

DOI: 10.1016/j.apcata.2010.01.039

Google Scholar

[28] A. Orendorz, A. Brodyanski, J. Losch, L. H. Bai, Z. H. Chen, Y. K. Le. C. Ziegler, H. Gnaser. Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Sirf. Sci. 601 (2007) 4390-4394.

DOI: 10.1016/j.susc.2007.04.127

Google Scholar

[29] D. Bersani, G. Antonioli, P. P. Lottici, T. Lopez. Raman study of nanosized titania prepared by sol-gel route. J. Non-Cryst Solids 232-234 (1998) 175-181.

DOI: 10.1016/s0022-3093(98)00489-x

Google Scholar

[30] R. Lopez, R, Gomez. Photocatalytic Degradation of 4-Nitrophenol on well characterized Sol-gel molybdenum doped titania semiconductors. Top Catal. 54 (2011) 504-511.

DOI: 10.1007/s11244-011-9614-0

Google Scholar

[31] K. Pai, Y. Dong, C. Tian, W. Zhou, G. Tian, B. Zhao, H. Fu. TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye, sensitized solar cells. Electrochim. Acta 54 (2009) 7350-7356.

DOI: 10.1016/j.electacta.2009.07.065

Google Scholar

[32] L. Gonzalez-Reyes, I. Hernandez-Perez, H. Dorantes-Rosales, E.M. Arce-Estrada. Sonochemical synthesis of Nanostructured anatase and study of the kinetics among phase transformation and coarsening as a function of heat treatment conditions. J. Eur. Ceram. Soc. 28 (2008) 1585-1594.

DOI: 10.1016/j.jeurceramsoc.2007.10.013

Google Scholar

[33] M. Cardona, G. Harbeke. Optical Properties and Band structure of Wurtzite-type crystals and rutile. Phys. Rev. 137 (1965) A1467-A1476.

DOI: 10.1103/physrev.137.a1467

Google Scholar

[34] M. P. Fuller, P. R. Griffiths. Diffuse Reflectance Measurements by Infrared Fourier Transform Spectrometry. Anal. Chem. 50 (1978) 1906-1910.

DOI: 10.1021/ac50035a045

Google Scholar

[35] T. R. N. Kutty, L. G. Devi. Photoelectrochemical properties of donor doped BaTiO3 electrodes. Mat. Res. Bull. 20 (1985) 793-801.

DOI: 10.1016/0025-5408(85)90058-3

Google Scholar

[36] R. Lopez, R. Gomez. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: a comparative study. J. Sol-Gel Sci. Technol. 61 (2012) 1-7.

DOI: 10.1007/s10971-011-2582-9

Google Scholar

[37] P. Kubelka, F. Munk. Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12 (1931) 593-601.

Google Scholar

[38] P. Kubelka. New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38 (1948) 448-457.

DOI: 10.1364/josa.38.000448

Google Scholar

[39] M. A. Behnajady, H. Eskandarloo. Silver and cooper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chem. Eng. J. 228 (2013) 1207-1213.

DOI: 10.1016/j.cej.2013.04.110

Google Scholar

[40] L. M. Pastrana-Martínez, S. Morales-Torres, A. G. Kontos, N. G. Moustakas, J. L. Faria, J. M. Doña-Rodriguez, P. Falaras, A. M. T. Silva. TiO2 surface modified TiO2 and grapheme oxide-TiO2 photocatalysts for degradation of water pollutants under near-UV/Vis and visible light. Chem Eng. J. 224 (2013) 17-23.

DOI: 10.1016/j.cej.2012.11.040

Google Scholar

[41] H. Gerischer, A. Heller. The role of oxigen in photooxidation of organic molecules in semi-conductor particles. J. Phys Chem 95 (1991) 5261-5266.

DOI: 10.1021/j100166a063

Google Scholar

[42] P. Wongwisate, S. Chavadej, E. Gulari, T. Sreethawong, P. Rangsunvigit. Effects of monometallic and bimetallic Au-Ag supported on sol-gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates. Desalination 272 (2011) 154-163.

DOI: 10.1016/j.desal.2011.01.016

Google Scholar

[43] N. Wang, X. Li, Y. Wang, X. Quan. G. Chen. Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem. Eng. J. 146 (2009) 30-35.

DOI: 10.1016/j.cej.2008.05.025

Google Scholar