Investigation of Mechanical Behaviour of the Bone Cement (PMMA) under Combined Shear and Compression Loading

Article Preview

Abstract:

Generally, implants fixations in orthopedic surgery are insured by bone cement; which is generated mainly from polymer polymethylmethacrylate (PMMA). Since, the cement is identified as the weakest part among bone-cement-prosthesis assembly. Hence, the characterization of mechanical behaviour is of a crucial requirement for orthopaedic surgeon’s success. In this study, we investigates the failure behaviour of bone cement, under combined shear and compression loading, for the aim to determine the strengths of bone cement for different mode loading conditions. Therefore, experimental cylindrical specimens has been tested to assess different shear-compression stresses. Based on the mechanical tests, a finite elements model of cylindrical specimens was developed to evaluate stresses distribution in the bone cement under compression, shear and combined shear-compression loading. Results show that, the load which leading to the failure of the cement decreased with increasing of the specimen angle inclination with respect of loading direction.

You might also be interested in these eBooks

Info:

Pages:

37-48

Citation:

Online since:

April 2019

Export:

Price:

* - Corresponding Author

[1] R.Vaishya ,M.Chauhan , A.Vaish, Bone cement,Journal of clinical orthopaedics and trauma 4. (2013) 157-163.

DOI: 10.1016/j.jcot.2013.11.005

Google Scholar

[2] M.M. Rahman, A.G. Olabi, M.S.J. Hashm, Finite Element Modelling of Rheological Property of Curing PMMA Bone Cement. Part 1 - Effect of Prosthesis Insertion Velocity", Journal of Biomimetics, Biomaterials and Tissue Engineering. 12 (2011) 83-90.

DOI: 10.4028/www.scientific.net/jbbte.12.83

Google Scholar

[3] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, G.N. Duda. Hip contact forces and gait patterns from routine activities, Journal of Biomechanics. (2002) 859-871.

DOI: 10.1016/s0021-9290(01)00040-9

Google Scholar

[4] N.L.O. Srakaew and S.T. Rattanachan, The pH-Dependent Properties of the Biphasic Calcium Phosphate for Bone Cements, Journal of Biomimetics, Biomaterials and Biomedical Engineering.21 (2014) 3-16.

DOI: 10.4028/www.scientific.net/jbbbe.21.3

Google Scholar

[5] S. Benbarek, A. Sahli, M. M. Bouziane, B. BachirBouiadjra, B. Serier, Crack length estimation from the damage modelisation around a cavity in the orthopedic cement of the total hip prosthesis, Key Engineering Materials. 577-578 (2014) 345-348.

DOI: 10.4028/www.scientific.net/kem.577-578.345

Google Scholar

[6] L.V Tuan, K. Ohnishi, H.Otsuka, Y.Agarie, S. Yamamoto, A.Hanafusa, Finite Element Analysis for the Estimation of the Ground Reaction Force and Pressure Beneath the Foot Prosthesis during the Gait of Transfemoral Patients, Journal of Biomimetics, Biomaterials and Biomedical Engineering.33 (2017) 1-11.

DOI: 10.4028/www.scientific.net/jbbbe.33.1

Google Scholar

[7] M.M. Bouziane, A. Moulgada, N. Djebbar, A. Sahli, BelAbbèsBachirBouiadjra, S. Benbarek, Effect of the Residual Stresses at the Stem–Cement Interface on the Mechanical Behaviour of Cemented Hip Femoral Prosthesis, International Journal of Engineering Research in Africa. 17 (2015) 54-63.

DOI: 10.4028/www.scientific.net/jera.17.54

Google Scholar

[8] H. Salah, M.M. Bouziane, S.M. Fekih,  B.BachirBouiadjra , S. Benbarek,Optimisation of a Reinforced Cement Spacer in Total Hip Arthroplasty, Journal of Biomimetics, Biomaterials and Biomedical Engineering.35 (2018) 35-49.

DOI: 10.4028/www.scientific.net/jbbbe.35.35

Google Scholar

[9] S. SahaandS. Pal, The mechanical properties of bone cement: a review, J Biomed Mater Res.18 (1984) 435-462.

Google Scholar

[10] D.R. Michael, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, L. Pruitt, In vivo behavior of acrylic bone cement in total hip arthroplasty, Biomaterials. 27 (2006) 256-261.

DOI: 10.1016/j.biomaterials.2005.05.103

Google Scholar

[11] K.D Kühn. Bone cements. Springer., Berlin Heidelberg, New York,Tokyo, (2000).

Google Scholar

[12] G. Lewis and S.Mladsi, Relationship between fracture toughness and impact strength of acrylic bone cement,Crit Rev Biomed Eng.28 (2000) 451-5.

DOI: 10.1615/critrevbiomedeng.v28.i34.170

Google Scholar

[13] W.A.M. Brekelmans, H.W. Poort, T.J.J.H. Sloof, A new method to analysethe mechanical behavior of skeletal parts, ActaOrthopScand.43 (1972) 301-17.

Google Scholar

[14] J.Stolk, N. Verdonschot, B.P. Murphy, P.J. Prendergast, R. Huiskes, Finite element simulation of anisotropic damage accumulation and creep in acrylic bone cement,Engineering Fracture Mechanics. 71 (2002) 513-528.

DOI: 10.1016/s0013-7944(03)00048-1

Google Scholar

[15] S. Benbarek, B. BachirBouiadjra, T. Achour, M. Belhouari, B. Serier, Finite element analysis of the behaviour of crack emanating from microvoid in cement of reconstructed acetabulum, Mater. Sci. Eng. A. 457 (2007) 385-391.

DOI: 10.1016/j.msea.2006.12.087

Google Scholar

[16] M.M. Bouziane, S.Benbarek, E.M.H. Tabeti, B. BachirBouiadjra, N. Benseddiq, B. Serier, A. Albedah, The Effect of Dynamic Loading from Routine Activities on Mechanical Behavior of the Total Hip Arthroplasty: Design and Computation of Modern Engineering Materials, Advanced Structured Materials 54 (2014) 73-87.

DOI: 10.1007/978-3-319-07383-5_6

Google Scholar

[17] M.M. Bouziane , H. Salah, S. Benbarek, B.BachirBouiadjra, B. Serier. Finite Element Analysis of the Mechanical Behaviour of a Reinforced PMMA-Based Hip Spacer", Advanced Materials Research. 1105 (2015) 36-40.

DOI: 10.4028/www.scientific.net/amr.1105.36

Google Scholar

[18] T. Jin, Z. Zhou, Z. Wang, G. Wu, Z. Liu, X. Shu. Quasi-static failure behaviour of PMMA under combined shear-compression loading, Polymer Testing. 42 (2015) 181-184.

DOI: 10.1016/j.polymertesting.2015.01.018

Google Scholar

[19] N. Nuño and G. Avanzolini, Residual stresses at the stem–cement interface of an idealized cemented hip stem, Journal of Biomechanics. 35 (2002) 849-852.

DOI: 10.1016/s0021-9290(02)00026-x

Google Scholar

[20] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, G.N. Duda, Hip contact forces and gait patterns from routine activities, Journal of Biomechanics. 34 (2001) 859-871.

DOI: 10.1016/s0021-9290(01)00040-9

Google Scholar

[21] G. Bergmann, F. Graichen, A. Rohlmann, Hip joint contact forces during stumbling, Langenbeck's Archives of Surgery, 389 (2004), 53-59.

DOI: 10.1007/s00423-003-0434-y

Google Scholar

[22] N. Dunne, Mechanical properties of bone cements, Orthopaedic bone cements. Wood head Publishing ISBN., 978-1-84569-376-3.

DOI: 10.1533/9781845695170.3.233

Google Scholar

[23] W. N. Ayre, S.P. Denyer, S.L. Evans. Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements, Journal of the Mechanical Behavior of Biomedical Materials, 32 (2014) 76-88.

DOI: 10.1016/j.jmbbm.2013.12.010

Google Scholar

[24] M. M. Bouziane, B. BachirBouiadjra, N. Benseddiq, E. M.H. Tabeti, B. Serier, S. Benbarek, The Effects of Cracks Emanating from Micro-Void and Bone Inclusion in Cemented Total Hip Replacement, Advances in Bio-Mechanical Systems and Materials, Advanced Structured Materials (2013) 41-57.

DOI: 10.1007/978-3-319-00479-2_4

Google Scholar

[25] D. Janssen , K.A. Mann , N. Verdonschot, Finite element simulation of cement-bone interface micromechanics: A comparison to experimental results, Journal of Orthopedic Research 27 (2009) 1312-1318.

DOI: 10.1002/jor.20882

Google Scholar

[26] M.D. Ries, E. Young, L. Al-Marashi, P. Goldstein, A. Hetherington, T. Petrie, L. Pruitt, In vivo behavior of acrylic bone cement in total hip arthroplasty, Biomaterials27 (2006) 256-261.

DOI: 10.1016/j.biomaterials.2005.05.103

Google Scholar

[27] R.T. J. Jonathan, M. Browne, A. B. Lennon, P.J. Prendergast, M. Taylor, Cement mantle fatigue failure in total hip replacement: Experimental and computational testing, Journal of Biomechanics 40, (2007) 1525-1533.

DOI: 10.1016/j.jbiomech.2006.07.029

Google Scholar

[28] N.A. Ramaniraka, L.R. Rakotomanana, P.F. Leyvraz, Effects of stem stiffness, cement thickness and roughness of the cement-bone surface, The Bone & Joint Journal,82 (2001) 297-303.

DOI: 10.1302/0301-620x.82b2.0820297

Google Scholar

[29] P. AE. Puolakka, R.G.F. Michael, R. Miika, T.J.S Puolakka, N. Klaus, L. Leena, Persistent pain following knee arthroplasty, European Journal of Anaesthesiology. 27 (2010) 455–460.

DOI: 10.1097/eja.0b013e328335b31c

Google Scholar

[30] A. Ramos and J.A. Simoes, The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses, Journal of Biomechanics. 42(2009) 2602-2610.

DOI: 10.1016/j.jbiomech.2009.06.037

Google Scholar

[31] A. Mestar, S. Zahaf, N.Zina, A.Boutaous, Development and Validation of a Numerical Model for the Mechanical Behavior of Knee Prosthesis Analyzed by the Finite Elements Method, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 37 (2018) 12-42.

DOI: 10.4028/www.scientific.net/jbbbe.37.12

Google Scholar

[32] A. Boukhlif,  A. Merdji, N. Della, E. OuldChikh, O. Mukdadi, R. Hillstrom, Numerical Evaluation of Biomechanical Stresses in Dental Bridges Supported by Dental Implants, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 37 (2018) 43-54.

DOI: 10.4028/www.scientific.net/jbbbe.37.43

Google Scholar

[33] H. El'Sheikh, B.J. MacDonald M.S.J. Hashmi, Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading, J. Mater. Process. Technol. 143-144 (2003) 249-255.

DOI: 10.1016/s0924-0136(03)00352-2

Google Scholar