Diffusion and Phase Transitions Accelerated by Severe Plastic Deformation

Article Preview

Abstract:

Severe plastic deformation (SPD) can lead to the phase transformations in the materials. Even the SPD-treatment at ambient temperature TSPD = 300 K is frequently equivalent to the heat treatment at a certain elevated temperature (effective temperature) Teff > 300 K. However, if the real annealing at effective temperature leads to the grain growth, SPD leads to strong grain refinement. SPD also accelerates the mass transfer in the materials. In this review the methods of determination for effective temperature after high-pressure torsion of metallic alloys are discussed as well as SPD-driven acceleration of diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-108

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Progr. Mater. Sci. 45 (2000) 103–189.

Google Scholar

[2] E.I. Teitel', L.S. Metlov, D.V. Gunderov, A.V. Korznikov, Phys. Metall. Metallogr. 113 (2012) 1162–1168.

DOI: 10.1134/s0031918x12120095

Google Scholar

[3] X. Sauvage, A. Chbihi, X. Quelennec, J. Phys. 240 (2010) 012003.

Google Scholar

[4] H.W. Zhang, S. Ohsaki, S. Mitao, A. Ohnuma, K. Hono, Mater. Sci. Eng. A 421 (2006) 191–199.

Google Scholar

[5] W. Lojkowski, M. Djahanbakhsh, G. Burkle, S. Gierlotka, W. Zielinski, H.J. Fecht, Mater. Sci. Eng. A 303 (2001) 197–208.

DOI: 10.1016/s0921-5093(00)01947-x

Google Scholar

[6] K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi, Scripta Mater. 44 (2001) 977–983.

DOI: 10.1016/s1359-6462(00)00690-4

Google Scholar

[7] A. Taniyama, T. Takayama, M. Arai, T. Hamada, Scripta Mater. 51 (2004) 53–58.

Google Scholar

[8] V.G. Gavriljuk, Mater. Sci. Eng. A 345 (2003) 81–89.

Google Scholar

[9] X. Sauvage, X. Quelennec, J.J. Malandain, P. Pareige, Scripta Mater. 54 (2006) 1099–1103.

DOI: 10.1016/j.scriptamat.2005.11.068

Google Scholar

[10] V.A. Teplov, V.P. Pilugin, V.S. Gaviko, E.G. Chernyshov, Phil. Mag. B 68 (1993) 877–881.

Google Scholar

[11] V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Mater. Sci. Eng. A 357 (2003) 159–167.

Google Scholar

[12] X. Sauvage, F. Wetscher, P. Pareige, Acta Mater. 53 (2005) 2127–2135.

Google Scholar

[13] B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov, R.Z. Valiev, Acta Mater. 52 (2004) 4469–4478.

DOI: 10.1016/j.actamat.2004.06.006

Google Scholar

[14] A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, R.Z. Valiev, Acta Mater. 54 (2006) 3933–3939.

DOI: 10.1016/j.actamat.2006.04.025

Google Scholar

[15] B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Rabkin, D. Goll, G. Schütz, B. Baretzky, R.Z. Valiev, J. Mater. Sci. 47 (2012) 360–367.

DOI: 10.1007/s10853-011-5805-0

Google Scholar

[16] C.M. Cepeda-Jiménez, J.M. García-Infanta, A.P. Zhilyaev, O.A. Ruano, and F. Carreño, J. Alloys Comp. 509 (2011) 636–643.

DOI: 10.1016/j.jallcom.2010.09.122

Google Scholar

[17] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H. -J. Fecht, Acta Mater. 54 (2006) 1659–1669.

DOI: 10.1016/j.actamat.2005.11.034

Google Scholar

[18] X. Sauvage, Y. Ivanisenko, J. Mater. Sci. 42 (2007) 1615–1621.

Google Scholar

[19] Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, H.J. Fecht, Acta Mater. 51 (2003) 5555–5570.

Google Scholar

[20] V.V. Sagaradze, S.V. Morozov, V.A. Shabashov, L.N. Romashev, R.I. Kuznetsov, Phys. Met. Metall. 66 (1988) 328–338.

Google Scholar

[21] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Dobatkin, A.O. Rodin, B. Baretzky, D. Goll, G. Schütz, Mater. Sci. Eng. A 503 (2009) 185–189.

DOI: 10.1016/j.msea.2008.03.052

Google Scholar

[22] V.V. Sagaradze, V.A. Shabashov, Nanostruct. Mater. 9 (1997) 681–684.

Google Scholar

[23] M. Murayama, K. Hono, Z. Horita, Mater. Trans. – JIM 40 (1999) 938–941.

Google Scholar

[24] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Acta Mater. 55 (2007) 2885–2895.

Google Scholar

[25] X. Sauvage, R. Pippan, Mater. Sci. Eng. A 410–411 (2005) 345–347.

Google Scholar

[26] X. Sauvage, C. Genevois, G. Da Costa, V. Pantsyrny, Scripta Mater. 61 (2009) 660–663.

DOI: 10.1016/j.scriptamat.2009.06.007

Google Scholar

[27] X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono, Scripta Mater. 60 (2009) 1056–1061.

Google Scholar

[28] B.B. Straumal, S.V. Dobatkin, A.O. Rodin, S.G. Protasova, A.A. Mazilkin, D. Goll, B. Baretzky, Adv. Eng. Mater. 13 (2011) 463–469.

DOI: 10.1002/adem.201000312

Google Scholar

[29] A.V. Korznikov, O. Dimitrov, G.F. Korznikova, J.P. Dallas, A. Quivy, R.Z. Valiev, A. Mukherjee, Nanostruct. Mater. 11 (1999) 17–23.

DOI: 10.1016/s0965-9773(98)00157-3

Google Scholar

[30] A.V. Korznikov, G. Tram, O. Dimitrov, G.F. Korznikova, S.R. Idrisova, Z. Pakiela, Acta Mater. 49 (2001) 663–671.

DOI: 10.1016/s1359-6454(00)00345-1

Google Scholar

[31] C. Rentenberger, H.P. Karnthaler, Acta Mater. 56 (2008) 2526–2530.

Google Scholar

[32] A.V. Sergueeva, C. Song, R.Z. Valiev, A.K. Mukherjee, Mater. Sci. Eng. A 339 (2003) 159–165.

Google Scholar

[33] S.D. Prokoshkin, I. Yu. Khmelevskaya, S.V. Dobatkin, I.B. Trubitsyna, E.V. Tatyanin, V.V. Stolyarov, E.A. Prokofiev, Acta Mater. 53 (2005) 2703–2714.

DOI: 10.1016/j.actamat.2005.02.032

Google Scholar

[34] X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. H. Ping, K. Hono, Acta. Mater. 49 (2001) 389–394.

DOI: 10.1016/s1359-6454(00)00338-4

Google Scholar

[35] T. Miyazaki, D. Terada, Y. Miyajima, C. Suryanarayana, R. Murao, Y. Yokoyama, K. Sugiyama, M. Umemoto, T. Todaka, N. Tsuji, J. Mater. Sci. 46 (2011) 4296–4301.

DOI: 10.1007/s10853-010-5240-7

Google Scholar

[36] A.A. Mazilkin, G.E. Abrosimova, S.G. Protasova, B.B. Straumal, G. Schütz, S.V. Dobatkin, A.S. Bakai, J. Mater. Sci. 46 (2011) 4336–4342.

DOI: 10.1007/s10853-011-5304-3

Google Scholar

[37] V.V. Stolyarov, D.V. Gunderov, A.G. Popov, V.S. Gaviko, A.S. Ermolenko, J. Alloys Comp. 281 (1998) 69–71.

Google Scholar

[38] Y. Matsuura, S. Hirosawa, H. Yamamoto, S. Fujimira, M. Sagawa, K. Osamura, Jap. J. Appl. Phys. Part 2 – Lett. 24 (1985) L635– L637.

Google Scholar

[39] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, D. Goll, B. Baretzky, A.S. Bakai, S.V. Dobatkin, Kovove Mater. – Metall. Mater. 49 (2011) 17–22.

DOI: 10.4149/km_2011_1_17

Google Scholar

[40] Á. Révész, S. Hóbor, J.L. Lábár, A.P. Zhilyaev, Zs. Kovácz, J. Appl. Phys. 100 (2006) 103522.

Google Scholar

[41] I. MacLaren, Y. Ivanisenko, R.Z. Valiev, H.J. Fecht, J. Phys. 26 (2006) 335–338.

Google Scholar

[42] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.J. Fecht, Sol. State Phen. 114 (2006) 133–144.

DOI: 10.4028/www.scientific.net/ssp.114.133

Google Scholar

[43] Y. Ivanisenko, I. MacLaren, X. Sauvage, R.Z. Valiev, H.J. Fecht, Acta Mater. 54 (2006) 1659–1669.

DOI: 10.1016/j.actamat.2005.11.034

Google Scholar

[44] A.P. Zhilyaev, I. Sabirov, G. González-Doncel, J. Molina-Aldareguía, B. Srinivasarao, M.T. Pérez-Prado, Mater. Sci. Eng. A 528, (2011) 3496–3505.

DOI: 10.1016/j.msea.2011.01.062

Google Scholar

[45] A.P. Zhilyaev, A.V. Sharafutdinov, M.T. Pérez-Prado, Adv. Eng. Mater. 12 (2010) 754–757.

Google Scholar

[46] A.P. Zhilyaev, F. Gálvezc, A.V. Sharafutdinov, M.T. Pérez-Prado, Mater. Sci. Eng. A 527 (2010) 3918–3928.

Google Scholar

[47] M.T. Pérez-Prado, A.V. Sharafutdinov, A.P. Zhilyaev, Mater. Lett. 64, (2010) 211–214.

Google Scholar

[48] M.T. Pérez-Prado, A.P. Zhilyaev, Phys. Rev. Lett. 102 (2009) 175504.

Google Scholar

[49] K. Edalati, Z. Horita, Y. Mine, Mater. Sci. Eng. A 527 (2010) 2136–2141.

Google Scholar

[50] K. Edalati, Z. Horita, S. Yagi, E. Matsubara, Mater. Sci. Eng. A 523 (2009) 277–281.

Google Scholar

[51] K. Edalati, E. Matsubara, Z. Horita, Metal Mater Trans A 40 (2009) 2079–(2086).

Google Scholar

[52] Y. Ivanisenko, A. Kilmametov, H. Roesner, R.Z. Valiev, Int. J. Mater. Res. 99 (2008) 36–41.

Google Scholar

[53] A.M. Glezer, M.R. Plotnikova, A.V. Shalimova, S.V. Dobatkin, Bull. Russ. Ac. Sci. Phys. 73, (2009) 1233–1236.

Google Scholar

[54] S. Hóbor, Á. Révész, A.P. Zhilyaev, Zs. Kovácz, Rev. Adv. Mater. Sci. 18 (2008) 590–592.

Google Scholar

[55] Zs. Kovács, P. Henits, A.P. Zhilyaev, Á. Révész, Scripta Mater. 54 (2006) 1733–1737.

DOI: 10.1016/j.scriptamat.2006.02.004

Google Scholar

[56] G.E. Abrosimova, A.S. Aronin, S.V. Dobatkin, S.D. Kaloshkin, D.V. Matveev, O.G. Rybchenko, E.V. Tatyanin, I.I. Zverkova, J. Metastab. Nanocryst. Mater. 24, (2005) 69–72.

DOI: 10.4028/www.scientific.net/jmnm.24-25.69

Google Scholar

[57] Á. Révész, E. Schafler, Zs. Kovács, Appl. Phys. Lett. 92 (2008) 011910.

Google Scholar

[58] S. Hóbor, Zs. Kovács, A.P. Zhilyaev, L.K. Varga, P. J. Szabó, Á. Révész, J. Phys. 240, 012153 (2010).

DOI: 10.1088/1742-6596/240/1/012153

Google Scholar

[59] S. Hóbor, Á. Révész, P. J. Szabó, A.P. Zhilyaev, V. Kovács Kis, J.L. Lábár, Zs. Kovács, J. Appl. Phys. 104 (2008) 033525.

DOI: 10.1063/1.2964115

Google Scholar

[60] P. Henits, Á. Révész, A.P. Zhilyaev, Zs. Kovács, J. Alloys Comp. 461, (2008) 195–199.

Google Scholar

[61] Zs. Kovács, P. Henits, A.P. Zhilyaev, N.Q. Chinh, Á. Révész, Mater. Sci. Forum 519-521 (2006) 1329–1334.

DOI: 10.4028/www.scientific.net/msf.519-521.1329

Google Scholar

[62] G. Martin, Phys. Rev. B 30 (1984) 1424–1436.

Google Scholar

[63] B.B. Straumal, A.A. Mazilkin, B. Baretzky, E. Rabkin, R.Z. Valiev, Mater. Trans. 53 (2012) 63–71.

Google Scholar

[64] B. B. Straumal, L. M. Klinger, L. S. Shvindlerman, Scripta metall. 17, (1983) 275–279.

Google Scholar

[65] D.A. Molodov, B.B. Straumal, L.S. Shvindlerman, Scripta metal. 18, (1984) 207–211.

Google Scholar

[66] G. Thomas, H. Mori, H. Fujita, Scripta Metall. 16, (1982) 589–592.

Google Scholar

[67] A.A. Mazilkin, B.B. Straumal, M.V. Borodachenkova, R.Z. Valiev, O.A. Kogtenkova, B. Baretzky, Mater. Lett. 84 (2012) 63–65.

DOI: 10.1016/j.matlet.2012.06.026

Google Scholar

[68] T.B. Massalski (Ed. ), Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, (1990).

Google Scholar

[69] B.B. Straumal, A.R. Kilmametov, Yu.O. Kucheev, L. Kurmanaeva, Yu. Ivanisenko, B. Baretzky, A. Korneva, P. Zięba, D.A. Molodov, Mater. Lett. 118 (2014) 111–114.

DOI: 10.1016/j.matlet.2013.12.042

Google Scholar

[70] B.B. Straumal, A.R. Kilmametov, A.A. Mazilkin, L. Kurmanaeva, Y. Ivanisenko, A. Korneva, P. Zięba, B. Baretzky, Mater. Lett. 138 (2014) 255–258.

DOI: 10.1016/j.matlet.2014.10.009

Google Scholar

[71] B.B. Straumal, A.R. Kilmametov, Yu. O. Kucheev, K.I. Kolesnikova, A. Korneva, P. Zięba, B. Baretzky, JETP Lett. 100 (2014) 376–379.

DOI: 10.1134/s0021364014180106

Google Scholar

[72] B.B. Straumal, A.R. Kilmametov, Yu. Ivanisenko, A.A. Mazilkin, O.A. Kogtenkova, L. Kurmanaeva, A. Korneva, P. Zięba, B. Baretzky, Int. J. Mater. Res. (former Zt. Metallkunde) 106 (2015) in press.

DOI: 10.1016/j.matlet.2014.10.009

Google Scholar

[73] G. Thomas, H. Mori, H. Fujita, Scr. Metal. 16 (1982) 589–592.

Google Scholar

[74] Z.S. Ji, M.L. Hu, X.P. Zheng, J. Mater. Sci. Technol. 23 (2007) 247–252.

Google Scholar

[75] Y.A. Shatilla, E.P. Loewen, Nucl. Technol. 151 (2005) 239–249.

Google Scholar

[76] M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, Y. Matsuura, J. Appl. Phys. 55 (1984) 2083–(2087).

Google Scholar

[77] U.R. Kattner, JOM 49(12) (1997) 14–19.

Google Scholar

[78] N. Mattern, U. Kühn, A. Gebert, A. Schoeps, T. Gemminga, L. Schultz, Mater. Sci. Eng. A 449/451 (2007) 207–210.

Google Scholar

[79] I. Gödény, D.L. Beke, F.J. Kedves, Phys. Stat. Sol. A 13 (1972) K155– K157.

DOI: 10.1002/pssa.2210130262

Google Scholar

[80] N.L. Peterson, S.J. Rothman, Phys. Rev. B 1 (1970) 3264–3272.

Google Scholar

[81] S.J. Rothman, N.L. Peterson, L.J. Nowicki, L.C. Robinson, Phys. Stat. Sol. B 63 (1974) K29–K33.

DOI: 10.1002/pssb.2220630151

Google Scholar

[82] G. Saada, Acta Met. 9 (1961) 965–975.

Google Scholar

[83] D.L. Beke, I. Gödény, F.J. Kedves, Phil. Mag. A. 47 (1983) 281–299.

Google Scholar

[84] D.L. Beke, I. Gödény, F.J. Kedves, Trans. Jap. Inst. Met. Suppl. 27 (1986) 649–653.

Google Scholar

[85] A.N. Aleshin, V. Yu. Aristov, B.S. Bokstein, L.S. Shvindlerman, Phys. Stat. Sol. A 45 (1978) 359–366.

Google Scholar

[86] A.N. Aleshin, B.S. Bokstein, A.L. Petelin, L.S. Shvindlerman, Metallofiz. 2 (1980) 83–95.

Google Scholar

[87] P. Zieba, A. Pawlowski, W. Gust, Def. Diff. Forum 194 (2001) 1759–1765.

Google Scholar

[88] A. Häßner, Isotopenpraxis 5 (1969) 143–149.

Google Scholar

[89] A. Häßner, Krist. Tech. 8 (1973) K1–K11.

Google Scholar

[90] A. Häßner, Krist. Tech. 9 (1974) 1371–1379.

Google Scholar

[91] T. Fujita, H. Hasegawa, Z. Horita, T.G. Langdon, Def. Diff. Forum 194 (2001) 1205–1210.

Google Scholar

[92] T. Fujita, Z. Horita, T.G. Langdon, Phil. Mag. A 82 (2002) 2249–2262.

Google Scholar

[93] T. Fujita, Z. Horita, T.G. Langdon, Mater. Sci. Forum 396 (2002) 1061–1066.

Google Scholar

[94] A.B. Vladimirov, V.N. Kaygorodov, S.M. Klotsman, V.D. Symbelov, I.S. Trachtenberg, Phys. Metal. Metallogr. 39 (1) (1975) 78–82.

Google Scholar

[95] H. Mehrer (Ed. ), Diffusion in Solid Metals and Alloys, Landolt-Börnstein New Series, Gr III, Vol. 26, Springer-Verlag, Berlin, (1990).

Google Scholar

[96] H. -E. Schaefer, Phys. Stat. Sol. A 102 (1987) 47–65.

Google Scholar

[97] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin , G. Wilde, Acta. Mater. 59 (2011) 1974–(1985).

DOI: 10.1016/j.actamat.2010.11.063

Google Scholar

[98] Y. Amouyal, S.V. Divinski, Y. Estrin, E. Rabkin, Acta Mater. 55 (2007) 5968–5979.

DOI: 10.1016/j.actamat.2007.07.026

Google Scholar

[99] P. Bellon, R.S. Averback, Phys. Rev. Lett. 74 (1995) 1819–1822.

Google Scholar

[100] G. Neumann, V. Tolle, Phil. Mag. A 57 (1988) 621–630.

Google Scholar

[101] C.A. Mackliet, Phys. Rev. 109 (1958) 1964–(1970).

Google Scholar

[102] S. Fujikawa, K.I. Hirano, in: J.I. Takamura, M. Doyama, M. Kiritani (Eds. ) Proc. of Yamada Vth Conf. on Point Defects, Defect Interactions in Metals, Univ. of Tokyo Press, Tokyo, 1982, p.554–558.

Google Scholar

[103] T. Surholt, Chr. Herzig, Acta Mater. 45 (1997) 3817–3823.

Google Scholar

[104] S. Divinski, J. Ribbe, G. Schmitz, Chr. Herzig, Acta Mater. 55 (2007) 3337–3346.

DOI: 10.1016/j.actamat.2007.01.032

Google Scholar

[105] V.A. Gorbachev, S.M. Klotsman, Ya.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev, Phys. Met. Metallogr. 34(4) (1972) 202–206.

Google Scholar

[106] W. Gust, B. Predel, U. Roll, Acta Metall. 28 (1980) 1395–1405.

Google Scholar