Novel Interdiffusion Analysis in Multicomponent Alloys - Part 1: Application to Ternary Alloys

Article Preview

Abstract:

A novel study of interdiffusion analysis in multicomponent alloys is presented. A custom written Matlab fitting program (MFP) is used as the main tool for the present study. The interdiffusion matrices are obtained using a newly developed mathematical approach based on the fitting into the closed form solution for the composition profiles. Overall, the new fitting method gives very good outcomes and allows the probing of multiple solutions (validated by back tests) that exist when a single diffusion couple is used in a multicomponent system. An important finding of the present investigations is that small differences in composition profiles may lead to large differences in the interdiffusion coefficients.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 29)

Pages:

161-177

Citation:

Online since:

April 2021

Export:

Price:

* - Corresponding Author

[1] J. S. Kirkaldy and D. J. Young, Diffusion in the condensed state, The Institute of Metals 1 Carlton House Terrace London SW 1 Y 5 DB UK (1987).

Google Scholar

[2] A. Fick, Ueber diffusion, Annalen der Phys. 170 (1855) 59-86.

Google Scholar

[3] G. E. Murch and C. M. Bruff, Chemical diffusion in inhomogeneous binary alloys, Landoldt-Börnstein New Series III 26 (1990) 279-339.

Google Scholar

[4] F. Sauer and V. Freise, Diffusion in binären Gemischen mit Volumenänderung, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 66 (1962) 353-362.

DOI: 10.1002/bbpc.v66:2

Google Scholar

[5] F. J. A. Den Broeder, A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems, Scripta Met. 3 (1969) 321-325.

DOI: 10.1016/0036-9748(69)90296-8

Google Scholar

[6] I. V. Belova, N. S. Kulkarni, Y. H. Sohn, and G. E. Murch, Simultaneous measurement of tracer and interdiffusion coefficients: an isotopic phenomenological diffusion formalism for the binary alloy Philo. Mag. 93 (2013) 3515-3526.

DOI: 10.1080/14786435.2013.813982

Google Scholar

[7] S. Prasad and A. Paul, Growth mechanism of phases by interdiffusion and diffusion of species in the niobium–silicon system, Acta Mat. 59 (2011) 1577-1585.

DOI: 10.1016/j.actamat.2010.11.022

Google Scholar

[8] A. Paul, A pseudobinary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Phil. Mag. 93 (2013) 2297-2315.

DOI: 10.1080/14786435.2013.769692

Google Scholar

[9] S. Roy, S. V. Divinski, and A. Paul, Reactive diffusion in the Ti–Si system and the significance of the parabolic growth constant, Phil. Mag. 94 (2014) 683-699.

DOI: 10.1080/14786435.2013.859759

Google Scholar

[10] T. Ahmed, I. V. Belova, A. V. Evteev, E. V. Levchenko, and G. E. Murch, Comparison of the Sauer-Freise and Hall methods for obtaining interdiffusion coefficients in binary alloys, JPED 36 (2015) 366-374.

DOI: 10.1007/s11669-015-0392-4

Google Scholar

[11] M. Afikuzzaman, I. V. Belova, and G. E. Murch, Investigation of Interdiffusion in High Entropy Alloys: Application of the Random Alloy Model, Diff. Found. 22 (2019) 94-108.

DOI: 10.4028/www.scientific.net/df.22.94

Google Scholar

[12] L. J. Gosting and H. Fujita, Interpretation of data for concentration-dependent free diffusion in two-component systems, J. Am. Chem. Society 79 (1957) 1359-1366.

DOI: 10.1021/ja01563a028

Google Scholar

[13] H. Fujita and L. J. Gosting, An exact solution of the equations for free diffusion in three-component systems with interacting flows, and its use in evaluation of the diffusion coefficients, J. Am. Chem. Society 78 (1956) 1099-1106.

DOI: 10.1021/ja01587a006

Google Scholar

[14] P. Gupta and A. Cooper Jr, The [D] matrix for multicomponent diffusion, Physica 54 (1971) 39-59.

Google Scholar

[15] M. Krishtal, A. P. Mokrov, V. K. Akimov, and P. N. Zakharov, Some Methods of Determining Diffusion Coefficients in Multicomponent Systems, Fizika Metallov Metallovedenie 35 (1973) 1234-1240.

Google Scholar

[16] D. P. Whittle and A. Green, The measurement of diffusion coefficients in ternary systems, Scripta Met. 8 (1974) 883-884.

DOI: 10.1016/0036-9748(74)90311-1

Google Scholar

[17] R. Bouchet and R. Mevrel, A numerical inverse method for calculating the interdiffusion coefficients along a diffusion path in ternary systems, Acta Mat. 50 (2002) 4887-4900.

DOI: 10.1016/s1359-6454(02)00358-0

Google Scholar

[18] D. Zhang, J. E. Morral, and H. D. Brody, Measurements for Cu and Si diffusivities in Al–Cu–Si alloys by diffusion couples, Mate. Sc. Eng.: A 447 (2007) 217-221.

DOI: 10.1016/j.msea.2006.10.078

Google Scholar

[19] S. Santra and A. Paul, Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple, Scripta Mat. 103 (2015) 18-21.

DOI: 10.1016/j.scriptamat.2015.02.027

Google Scholar

[20] K. Cheng, W. Chen, D. Liu, L. Zhang, and Y. Du, Analysis of the Cermak–Rothova method for determining the concentration dependence of ternary interdiffusion coefficients with a single diffusion couple, Scripta Mat. 76 (2014) 5-8.

DOI: 10.1016/j.scriptamat.2013.11.033

Google Scholar

[21] W. Chen, L. Zhang, Y. Du, C. Tang, and B. Huang, A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple, Scripta Mat. 90 (2014) 53-56.

DOI: 10.1016/j.scriptamat.2014.07.016

Google Scholar

[22] M. A. Dayananda, Determination of eigenvalues, eigenvectors, and interdiffusion coefficients in ternary diffusion from diffusional constraints at the Matano plane, Acta Mat. 129 (2017) 474-481.

DOI: 10.1016/j.actamat.2017.03.012

Google Scholar

[23] W. Hopfe and J. Morral, Uncertainty analysis of ternary diffusivities obtained from one versus two compact diffusion couples, JPED 37 (2016) 110-118.

DOI: 10.1007/s11669-015-0431-1

Google Scholar

[24] R. Mohanty and Y. Sohn, Phase-field investigation of multicomponent diffusion in single-phase and two-phase diffusion couples, JPED 27 (2006) 676-683.

DOI: 10.1007/bf02736572

Google Scholar

[25] J. Morral and W. Hopfe, Validation of multicomponent diffusivities using one diffusion couple, JPED 35 (2014) 666-669.

DOI: 10.1007/s11669-014-0331-9

Google Scholar

[26] M. Dayananda and Y. Sohn, A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple, Met. Mat. Trans. A 30 (1999) 535-543.

DOI: 10.1007/s11661-999-0045-5

Google Scholar

[27] C. J. O'Brien and A. Lupulescu, VisiMat-software for the visualization of multicomponent diffusion in two and three dimensions, JPED 28 (2007) 335-341.

DOI: 10.1007/s11669-007-9094-x

Google Scholar

[28] L. Ram-Mohan and M. A. Dayananda, Ternary diffusion path in terms of eigenvalues and eigenvectors, Phil. Mag. 96 (2016) 938-954.

DOI: 10.1080/14786435.2016.1149245

Google Scholar

[29] M. Afikuzzaman, I. V. Belova, G. E. Murch, and J. E. Morral, Interdiffusion Analysis in Ternary Systems to Process Composition Profiles and Obtain Constant Interdiffusion Coefficients Using One Compact Diffusion Couple, JPED 40 (2019) 522-531.

DOI: 10.1007/s11669-019-00740-0

Google Scholar

[30] I. V. Belova, M. Afikuzzaman and G. E. Murch, New approach for interdiffusion analysis of multicomponent alloy, Scripta Mat. Submitted for publication.

DOI: 10.1016/j.scriptamat.2021.114143

Google Scholar

[31] H. Kim, Procedures for Isothermal Diffusion Studies of Four-Component Systems1, J. Phy. Chem. 70 (1966) 562-575.

Google Scholar