An Integral Treatment for Dissipative Boundary Layer Flow along a Radiating Vertical Surface by Natural Convection in a Porous Medium

Article Preview

Abstract:

In the present study, an integral method of Von Karman type has been used to analyse the phenomenon of natural convection heat and mass transfer near a vertical surface embedded in a fluidsaturated porous medium considering the viscous dissipation and radiation effects. The buoyancy effect is due to the variation of temperature and concentration across the boundary layer. The effects of the governing parameters e.g. buoyancy ratio (N), Lewis number (Le), Eckert number (Ec) and radiation parameter (R) on local Nusselt number, local Sherwood number, velocity profile, temperature profile and concentration profile have been investigated. The results obtained in the present analysis have been compared with the published results available in the literature and they have been found in precise agreement.

You might also be interested in these eBooks

Info:

Periodical:

Diffusion Foundations (Volume 11)

Pages:

191-207

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] A. Bejan, K. R. Khair, Heat and mass transfer by natural convection in a porous medium, Int. J. Heat Mass Transfer 28 (1985) 909-918.

DOI: 10.1016/0017-9310(85)90272-8

Google Scholar

[2] J. H. Merkin, Free convection boundary layers on axi-symmetric and two-dimensional bodies of arbitrary shape in a saturated porous medium, Int. J. Heat Mass Transfer 22 (1979) 1461-1462.

DOI: 10.1016/0017-9310(79)90210-2

Google Scholar

[3] A. Nakayama, H. Koyama, Free convective heat transfer over a non-isothermal body of arbitrary shape embedded in a fluid-saturated porous medium, J. Heat Transfer 109 (1987) 125-130.

DOI: 10.1115/1.3248032

Google Scholar

[4] D. A. Nield, Onset of thermohaline convection in a porous medium, Water Resour. Res. 4(3) (1968) 553-560.

DOI: 10.1029/wr004i003p00553

Google Scholar

[5] A. A. Khan, A. Zebib, Double diffusive instability in a vertical layer of a porous medium, J. Heat Transfer 103(1) (1981) 179-181.

DOI: 10.1115/1.3244418

Google Scholar

[6] O. V. Trevisan, A. Bejan, Natural convection with combined heat and mass transfer buoyancy effects in a porous medium, Int. J. Heat and Mass Transfer 28(8) (1985) 1597-1611.

DOI: 10.1016/0017-9310(85)90261-3

Google Scholar

[7] O. V. Trevisan, A. Bejan, Mass and heat transfer by natural convection in a vertical slot filled with porous medium, Int. Heat Mass and Transfer 29(3) (1986) 403-415.

DOI: 10.1016/0017-9310(86)90210-3

Google Scholar

[8] O. V. Trevisan, A. Bejan, Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below, Int. J. Heat and Mass Transfer 30(11) (1987) 2341-2356.

DOI: 10.1016/0017-9310(87)90226-2

Google Scholar

[9] F. Mebarek-Oudina, R. Bessaih, Magnetohydrodynamic Stability of Natural Convection Flows in Czochralski Crystal Growth, World Journal of Engineering 4(4) (2007).

Google Scholar

[10] F. Mebarek-Oudina, R. Bessaih, Numerical Modeling of MHD Stability in a Cylindrical Configuration, Journal of the Franklin Institute 351(2) (2014) 667681.

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[11] F. Mebarek-Oudina, R. Bessaih, Oscillatory Magnetohydrodynamic Natural Convection of Liquid Metal between Vertical Coaxial Cylinders, J. of Applied Fluid Mechanics 9(4) (2016) 1655- 1665.

DOI: 10.18869/acadpub.jafm.68.235.24813

Google Scholar

[12] A. Y¨ucel, Heat and mass transfer about vertical surfaces in saturated porous media, AlChE Symp. Ser. 269, 85(1989) 344.

Google Scholar

[13] F. C. Lai, C.Y. Choi, F. A. Kulacki, Coupled heat and mass transfer by natural convection from slender bodies of revolution in porous media, Int. Commun. Heat Mass Transfer 17(15) (1990) 609-620.

DOI: 10.1016/0735-1933(90)90009-9

Google Scholar

[14] F. C. Lai, F. A. Kulacki, Coupled heat and mass transfer by natural convection from vertical surfaces in porous media, Int. J. Heat Mass Transfer 34(4-5) (1991) 1189-1194.

DOI: 10.1016/0017-9310(91)90027-c

Google Scholar

[15] A. Nakayama, M. A. Hossain, An integral treatment for combined heat and mass transfer by natural convection in a porous medium, Int. J. Heat Mass Transfer 38(4) (1995) 761-765.

DOI: 10.1016/0017-9310(95)93012-7

Google Scholar

[16] P. Singh, Queeny, Free convection heat and mass transfer along a vertical surface in a porous medium, Acta Mech. 123(1-4) (1997) 69-73.

DOI: 10.1007/bf01178401

Google Scholar

[17] D. Angirasa, G. P. Peterson, I. Pop, Combined heat and mass transfer by natural convection with opposing buoyancy effect in a fluid saturated porous medium, Int. J. Heat Mass Transfer 40(12) (1997) 2755.

DOI: 10.1016/s0017-9310(96)00354-7

Google Scholar

[18] A. Amahmid, M. Hasnaoui, M. Mamou, P. Vasseur, Boundary layer flows in a vertical porous enclosure induced by opposing buoyancy forces, Int. J. Heat Mass Transfer 42(19) (1999) 3599- 3608.

DOI: 10.1016/s0017-9310(99)00019-8

Google Scholar

[19] K. A. Yih, Coupled heat and mass transfer by free convection over a truncated cone in porous media: VWT/VWC or VHF/VMF, Acta Mech. 137(1-2) (1999) 83-97.

DOI: 10.1007/bf01313146

Google Scholar

[20] A. J. Chamkha, Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects, Numer. Heat Transfer 39(5) (2001) 511-530.

DOI: 10.1080/104077801750111601

Google Scholar

[21] V. J. Bansod, P. Singh, B. V. Rathishkumar, Heat and mass transfer by natural convection from a vertical surface to the stratified Darcian fluid, J. Porous Media 5(1) (2002) 57-66.

DOI: 10.1615/jpormedia.v5.i1.60

Google Scholar

[22] V. J. Bansod, The Darcy model of the boundary layer flows in a horizontal porous medium induced by combined buoyancy forces, J. Porous Media 6(4) (2003) 273-281.

DOI: 10.1615/jpormedia.v6.i4.60

Google Scholar

[23] B. B. Singh, I. M. Chandarki, Integral treatment of coupled heat and mass transfer by natural convection from a cylinder in porous media, Int. Commun. Heat Mass Transfer 36(3) (2009) 269-273.

DOI: 10.1016/j.icheatmasstransfer.2008.11.007

Google Scholar

[24] B. B. Singh, An integral treatment for heat and mass transfer along a vertical wall by natural convection in porous media, Seluck J. Appl. Math. 7(2) (2006) 125-133.

Google Scholar

[25] P. Singh, K. Sharma, Integral method to free convection in thermally stratified porous medium, Acta Mech. 83(3-4) (1990) 157-163.

DOI: 10.1007/bf01172977

Google Scholar

[26] Nasreen Bano, B. B. Singh, An integral treatment for coupled heat and mass transfer by natural convection from a radiating vertical thin needle in a porous medium, Int. Commun. Heat Mass Transfer 84 (2017) 41-48.

DOI: 10.1016/j.icheatmasstransfer.2017.03.007

Google Scholar

[27] E. M. Sparrow, R. D. Cess, Radiation heat transfer, Brooks Cole Publishing Company, Belmont, California, (1970).

Google Scholar

[28] K. Vafai, H. A. Hadim, J. R. Howell, Radiative transfer in porous media, Handbook of Porous Media, CRC Press, New York, (2000).

Google Scholar

[29] P. Vyas, A. Rai, Radiative variable fluid properties flow due to a point sink inside a cone filled with porous medium, Applied Mathematical Sciences 6(87) (2012) 4307-4317.

Google Scholar

[30] O. A. Plumb, J. S. Huenefeld, E. J. Eschbach, The effect of cross flow and radiation on natural convection from vertical heated surfaces in saturated porous media, AIAA 16th Thermophysics Conference, USA, (1981).

DOI: 10.1016/0017-9310(81)90020-x

Google Scholar

[31] M. A. Hossain, H. S. Takhar, Radiation effect on mixed convection along a vertical plate with uniform surface temperature", Heat Mass Transfer 31(4) (1996) 243-248.

DOI: 10.1007/bf02328616

Google Scholar

[32] A. Raptis, Radiation and free convection flow through a porous medium, Int. Commun. Heat Mass Transfer 25(2) (1998) 289-295.

DOI: 10.1016/s0735-1933(98)00016-5

Google Scholar

[33] M. A. Sedeek, A. M. Salem, Laminar mixed convection adjacent to vertical continuously stretching sheet with variable viscosity and variable thermal diffusivity, Heat Mass Transfer 41(12) (2005) 1048-1055.

DOI: 10.1007/s00231-005-0629-6

Google Scholar

[34] M. Q. Al-Odat, F. M. S. Al-Hussein, R. A. Damesh, Influence of radiation on mixed convection over a wedge in non-Darcy porous medium, Forsch. Ingenieurwes 69(4) (2005) 209-215.

DOI: 10.1007/s10010-005-0004-2

Google Scholar

[35] V. R. Prasad, N. B. Reddy, R. Muthucumarswamy, Radiation and mass transfer effects on twodimensional flow past an impulsively started infinite vertical plate, Int. J. Therm. Sci. 46(12) (2007) 1251-1258.

DOI: 10.1016/j.ijthermalsci.2007.01.004

Google Scholar

[36] O. D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chem. Eng. Comm. 195 (2008) 1575 - 1584.

DOI: 10.1080/00986440802115549

Google Scholar

[37] S. Mukopadhyay, Effects of radiation and variable fluid viscosity on flow and heat transfer along a symmetric wedge, J. of Appl. Fluid Mech. 2(2) (2009) 29-34.

DOI: 10.36884/jafm.2.02.11866

Google Scholar

[38] P. Vyas, N. Shrivastava, Radiative MHD flow over a non-isothermal stretching sheet in a porous medium, Appl. Math. Sci. 4(50) (2010) 2475-2484.

Google Scholar

[39] P. Vyas, A. Ranjan, Dissipative MHD boundary layer flow in a porous medium over a sheet stretching non-linearly in the presence of radiation, Appl. Math. Sci. 4(63) (2010) 3133-3142.

Google Scholar

[40] D. S. Chauhan, V. Kumar, Radiation effects on mixed convection flow and viscous heating in a vertical channel partially filled with a porous medium, Tamkang J. of Sci. and Engg. 14(2) (2011) 97-106.

Google Scholar

[41] I. G. Baoku, C. Israel- Cookey, B. I. Olajuwan, Influence of thermal radiation on a transient MHD Coutte flow through a porous medium, J. Appl. Fluid Mech. 5(1) (2012) 81-87.

Google Scholar

[42] S. Mukhopadhyay, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation, Ain Shams Engineering Journal (2012).

DOI: 10.1016/j.asej.2012.10.007

Google Scholar

[43] G.S. Seth, S. Sarkar, S.M. Hussain, Effects of Hall current, radiation and rotation on natural convection heat and mass transfer flow past a moving vertical plate, Ain Shams Engineering Journal (2013).

DOI: 10.1016/j.asej.2013.09.014

Google Scholar

[44] S. Siddiqa, M.A. Hossain, S. C. Saha, The effect of thermal radiation on the natural convection boundary layer flow over a wavy horizontal surface, International Journal of Thermal Sciences 84 (2014) 143-150.

DOI: 10.1016/j.ijthermalsci.2014.05.006

Google Scholar

[45] D. Srinivasacharya, P. V. Kumar, Radiation effect on natural convection over an inclined wavy surface embedded in a non-Darcy porous medium saturated with a nanofluid, Journal of Porous Media 18 (8) (2015) 777-789.

DOI: 10.1615/jpormedia.v18.i8.30

Google Scholar

[46] M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3 - water nanofluid considering thermal radiation: A numerical study, International Journal of Heat and Mass Transfer 96 (2016) 513 - 524.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.059

Google Scholar

[47] M. Sheikholeslami, M. Shamlooei, Fe3O4 − H2O nanofluid natural convection in presence of thermal radiation, international journal of hydrogen energy (2017).

DOI: 10.1016/j.ijhydene.2017.02.031

Google Scholar

[48] J. Van Rij, T. Ameel, T. Harman, The effect of viscous dissipation and rarefaction on rectangular microchannel convective heat transfer, Int. J. Therm. Sci. 48 (2009) 271281.

DOI: 10.1016/j.ijthermalsci.2008.07.010

Google Scholar

[49] I. A. Badruddin, Z.A. Zainal, Z. A. Khan , Z. Mallick, Effect of viscous dissipation and radiation on natural convection in a porous medium embedded within vertical annulus, Int. J. Therm. Sci. 46 (2007) 221-227.

DOI: 10.1016/j.ijthermalsci.2006.05.005

Google Scholar

[50] R. R. Kairi, P. V. S. N. Murthy, Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium, Appl. Math. Comp. 217 (2011) 81008114.

DOI: 10.1016/j.amc.2011.03.013

Google Scholar

[51] M. H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Effects of Viscous Dissipation on the Slip MHD Flow and Heat Transfer past a Permeable Surface with Convective Boundary Conditions, Energies 4 (2011) 2273 - 2294.

DOI: 10.3390/en4122273

Google Scholar

[52] T. G. Motsumi, O. D. Makinde, Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, Phys. Scr. 86 (2012) 045003 (8pp).

DOI: 10.1088/0031-8949/86/04/045003

Google Scholar

[53] Md. S. Khan, I. Karim, L. E. Ali, A. Islam, Unsteady MHD free convection boundary-layer flow of a nanofluid along a stretching sheet with thermal radiation and viscous dissipation effects, International Nano Letters 2(24) (2012), 1-9.

DOI: 10.1186/2228-5326-2-24

Google Scholar

[54] N. T. M. Eldabe, S. N. Sallam, M. Y. Abou-zeid, Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium, Journal of the Egyptian Mathematical Society 20 (2012).

DOI: 10.1016/j.joems.2012.08.013

Google Scholar

[55] A. M. Salem, The Effects of Variable Viscosity, Viscous Dissipation and Chemical Reaction on Heat and Mass Transfer Flow of MHD Micropolar Fluid along a Permeable Stretching Sheet in a Non-Darcian Porous Medium, Mathematical Problems in Engineering (2013).

DOI: 10.1155/2013/185074

Google Scholar

[56] F. Mabood, S. Shateyi, M. M. Rashidi, E. Momoniat, N. Freidoonimehr, MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction, Advanced Powder Technology (2016).

DOI: 10.1016/j.apt.2016.02.033

Google Scholar

[57] M. Q. Brewster, Thermal Radiative transfer and properties, John Wiley and Sons, New York (1992).

Google Scholar