Consequences of Inappropriate Temperatures of the Solution Heat Treatment in Al-Si-Cu Cast Alloys

Article Preview

Abstract:

Al-Si-Cu alloy systems have a great importance in the casting industry due to their excellent castability, good mechanical properties and wear resistance. Addition of alloying elements, such as Mg and Cu, makes these alloys heat treatable. Improving of their mechanical properties allows their using in new, more demanding applications (e.g. engines, cylinder heads etc.). The most applied heat treatment for this alloy is a T6 (age hardening). Such a heat treatment is required for precipitation of the Al2Cu hardening dispersed phase that increases the mechanical properties of Al alloys. Therefore, the consequences of different solution heat treatment temperatures 505, 515 and 525 °C for AlSi9Cu3 and 515, 525 and 545 °C for AlSi12Cu1Fe cast alloys, with holding times 2, 4, 8, 16 and 32 hours, were investigated in this study. The effect of solution treatment was evaluated based on changes in microstructure (optical microscopy) and mechanical properties (hardness, impact energy and ultimate tensile strength). The study confirms the strengthening of the experimental alloys caused by application of optimum conditions of T6 and melting of the Cu-rich phases with application of inappropriate solution temperature, as well as distortion and changes of the testing bars.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-364

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] L.M. Shehadeh, I.S. Jalham, The effect of adding different percentages of manganese and copper on the mechanical behavior of aluminium, Jordan Journal of Mechanical and Industrial Engineering 10, 1 (2016) 19-26.

Google Scholar

[2] M.M. Haque, M.A. Maleque, Effect of process variables on structure and properties of aluminum-silicon piston alloy, J. Mater. Process. Technol. 77 (1998) 122-128.

DOI: 10.1016/s0924-0136(97)00409-3

Google Scholar

[3] J. Wang, S. Yue, Y. Fautrelle, P.D. Lee, X. Li, Y. Zhong, Z. Ren, Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy, Scientific reports 6 (2016) article N. 24585.

DOI: 10.1038/srep24585

Google Scholar

[4] R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, Z.Q. Hu, Age-hardening behavior of Al-Si base alloy, Mater. Lett. 58 (2004) 2096-2101.

DOI: 10.1016/j.matlet.2003.12.027

Google Scholar

[5] G. Guo, Aluminum microstructure evolution and effects on mechanical properties in quenching and aging process, PhD thesis, Worcester (2017).

Google Scholar

[6] M. Zeren, E. Karakulak, Study on hardness and microstructural characteristics of sand cast Al–Si–Cu alloys, Bull. Mater. Sci. 32, 6 (2009) 617-620.

DOI: 10.1007/s12034-009-0095-8

Google Scholar

[7] Y. Kim, R.G. Buchheit, A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al-Cu solid solution alloys, Electrochim. Acta 52 (2007) 2437-2446.

DOI: 10.1016/j.electacta.2006.08.054

Google Scholar

[8] R. Rosliza, W.B. Wan Nik, H.B. Senin, The effect of inhibitor on the corrosion of aluminum alloys in acidic solutions, Mater. Chem. & Phys. 107 (2008) 281-288.

DOI: 10.1016/j.matchemphys.2007.07.013

Google Scholar

[9] G. Mrówka-Nowotnik, Intermetallic phase particles in cast AlSi5Cu1Mg and AlCu4Ni2Mg2 aluminium alloys, Archives of Materials Science and Engineering 38, 2 (2009) 69-77.

DOI: 10.5772/21453

Google Scholar

[10] A.A. Samuel, S. Seifedine, A.E.W. Jarfors, Y.C. Lee, A.K. Dahle, Development of new Al-Cu-Si alloys for high temperature performance, Advanced materials letters 8, 6 (2017) 695-701.

DOI: 10.5185/amlett.2017.1471

Google Scholar

[11] Heat Treating of Aluminum Alloys. ASM Handbook, 1991, Volume 4: Heat Treating ASM Handbook Committee, pp.841-879,.

Google Scholar

[12] C.S. Kim, J.W. Jo, H.M. Lee, The effect of solution treatment on incipient melting of Al2Cu intermetallic phase in lightweight materials, Materials Science forum 587 (2015) 256-260.

DOI: 10.4028/www.scientific.net/msf.857.256

Google Scholar

[13] J. Barresi, M.J. Kerr, H. Wang, M.J. Couper, Effect of Magnesium, Iron, and Cooling Rate on Mechanical Properties of Al-7Si-Mg Foundry Alloys, AFS Transactions 108 (2000) 563-570.

Google Scholar

[14] J. Gauthier, P. Louchez, F.H. Samuel, Heat Treatment of 319.2 Al Automotive Alloys: Part 1, Solution Heat Treatment, Cast Metals 8, 1 (1995) 91-106.

DOI: 10.1080/09534962.1995.11819197

Google Scholar

[15] G. Mrówka-Nowotnik, J. Sieniawcki, A. Nowotnik, The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy, Journal of Microscopy 237, 3 (2010) 407-410.

DOI: 10.1111/j.1365-2818.2009.03273.x

Google Scholar

[16] M. Javidani, D. Larouche, Evolution of intermetallic phases in multicomponent Al-Si foundry alloys containing defferent Cu, Mg and Fe content, American foundry society, Schaumburg, USA 2014, 1-9.

DOI: 10.1007/s11661-015-2856-x

Google Scholar

[17] O. Reiso, H.G. Overlie, N. Ryum, Dissolution and melting of secondary Al2Cu phases particles in AlCu alloy, Metallurgical Transactions A 21, 6 (1990) 1689-1695.

DOI: 10.1007/bf02672585

Google Scholar

[18] A.M.A. Mohamed, F.H. Samuel, A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys, in: F. Czerwinski (Eds.), Heat treatment, INTECH 2012, Chapter 4, pp.55-72.

DOI: 10.5772/50282

Google Scholar

[19] G. Garcia, J.E. Cuada, H. Mancha, Cooper content and cooling rate effects over second phase particles behaviour in industrial A-Si alloy 319, Materials and Design 28, 2 (2007) 428-433.

DOI: 10.1016/j.matdes.2005.09.021

Google Scholar

[20] L. Kuchariková, E. Tillová, O. Bokůvka, Recycling and properties of recycled aluminium alloys used in the transport industry, Transport problems 11, 2 (2016) 117-122.

DOI: 10.20858/tp.2016.11.2.11

Google Scholar

[21] E. Tillová, M. Chalupová, L. Hurtalová, Evolution of phases in recycled Al-Si cast alloy during solution treatment, Scanning electron microscopy (2012) 411-438.

DOI: 10.5772/34542

Google Scholar

[22] L. Hurtalová, E. Tillová, M. Chalupová, Microstructural and Vickers Microhardness Evolution of Heat Treated Secondary Aluminium Cast Alloy, Conference: 9th International Conference on Local Mechanical Properties (LMP 2012), Slovakia, Nov. 07-09, 2012, Local Mechanical Properties IX Book Series: Key Engineering Materials 586 (2014) 137-140.

DOI: 10.4028/www.scientific.net/kem.586.137

Google Scholar

[23] D. Závodská, E. Tillová, M. Guagliano, Fatigue Resistance of Self-hardening Aluminium Cast Alloy, Conference: 33rd Danubia Adria Symposium on Advances in Experimental Mechanics (DAS), Slovenia, Sept. 20-23, 2016, Materials Today – Proceedings 4, 5 (2017) 6001-6006.

DOI: 10.1016/j.matpr.2017.06.085

Google Scholar

[24] M.V. Kral, H.R. McIntyre, M.J. Smillie, Identification of intermetallic phases in a eutectic Al-Si casting alloy using electron backscatter diffraction pattern analysis, Scripta Materiallia 51, 15 (2004) 215-219.

DOI: 10.1016/j.scriptamat.2004.04.015

Google Scholar