Promising Materials of Nonvolatile Memory Based on HfOх and Achievement of Device Parameters in the TiN/Hf0.5Zr0.5O2/ TiN/SiO2/Si and TiN/HfXAl1-XOY/Pt/SiO2/Si Test Structures Obtained on the National Technological Basis

Article Preview

Abstract:

The properties and applications of materials with non-volatile memory based on HfO2 were briefly considered. In addition, an overview of the obtained results was given. On the basis of these results, the possibility of use of the structures TiN/ Hf0.5Zr0.5O2/ TiN/ SiO2/ Si and TiN/ HfxAl1-xOy/ Pt/ SiO2/ Si for the non-volatile memory of FeRAM and ReRAM types obtained by the atomic-layer deposition was shown. In addition, the scalability of these elements and opportunity to create promising submicron integrated circuits for ferroelectric and resistive memory were demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-177

Citation:

Online since:

September 2018

Authors:

Export:

Price:

* - Corresponding Author

[1] G.Ya. Krasnikov, O.M. Orlov, Distinctive features and problems of CMOS technology while reducing the design norm to 0.18 μm or less. Russian Nanotechnologies (RU). 3 (2008) 124-128.

Google Scholar

[2] C-H. Ho, Ch-L. Hsu, Ch-Ch. Chen et al., 9nm half-pitch functional resistive memory cell with <1µA programming current using thermally oxidized sub-stoichiometric WOx film, IEDM. (2010) 19.1.1 - 19.1.4.

DOI: 10.1109/iedm.2010.5703389

Google Scholar

[3] International Technology Roadmap of semiconductors. Edition - 2011. http://www.itrs.net.

Google Scholar

[4] H.Y. Lee, Y.S. Chen, P.S. Chen et al., Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance, IEDM. (2010) 19.7.1 - 19.7.4.

Google Scholar

[5] M-J. Lee, Ch. B. Lee, D. Lee et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−X/TaO2−X bilayer structures, Nature Materials 10 (2011) 625-630.

DOI: 10.1038/nmat3070

Google Scholar

[6] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99 (2011) 102903.

DOI: 10.1063/1.3634052

Google Scholar

[7] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, & T. Mikolajick, Incipient ferroelectricity in Al doped HfO2 thin films. Advanced Functional Materials, 22(11) (2012) 2412-2417.

DOI: 10.1002/adfm.201103119

Google Scholar

[8] J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano letters, 12(8) (2012) 4318-4323.

DOI: 10.1021/nl302049k

Google Scholar

[9] J. Müller, T.S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kucher, T. Mikolajick, L. Frey, Ferroelectric Zr0. 5Hf0. 5O2 thin films for nonvolatile memory applications. Applied Physics Letters, 99(11) (2011) 112901.

DOI: 10.1063/1.3636417

Google Scholar

[10] P.M. Hyuk, K.H. Joon, K.Y. Jin, W. Lee, K.H. Kyeom, H.C. Seong, Effect of forming gas annealing on the ferroelectric properties of Hf0. 5Zr0. 5O2 thin films with and without Pt electrodes. Applied Physics Letters, 102(11) (2013) 112914.

DOI: 10.1063/1.4798265

Google Scholar

[11] P.M. Hyuk, K.H. Joon, K.Y. Jin, W. Lee, T. Moon, H.C. Seong, Evolution of phases and ferroelectric properties of thin Hf0. 5Zr0. 5O2 films according to the thickness and annealing temperature. Applied Physics Letters, 102(24) (2013) 242905.

DOI: 10.1063/1.4811483

Google Scholar

[12] A. Chernikova, M. Kozodaev, A. Markeev, Y. Matveev, D. Negrov, O. Orlov, Confinement-free annealing induced ferroelectricity in Hf0. 5Zr0. 5O2 thin films. Microelectronic Engineering, 147 (2015) 15-18.

DOI: 10.1016/j.mee.2015.04.024

Google Scholar

[13] M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, & C.S. Hwang, Ferroelectricity and Antiferroelectricity of Doped Thin HfO2‐Based Films. Advanced Materials, 27(11) (2015) 1811-1831.

DOI: 10.1002/adma.201404531

Google Scholar

[14] H. Zhang, B. Gao, S. Yu, L. Lai, L. Zeng, B. Sun, & J. Kang, Effects of ionic doping on the behaviors of oxygen vacancies in HfO2 and ZrO2: A first principles study. In Simulation of Semiconductor Processes and Devices, 2009, September. SISPAD'09. International Conference on. – IEEE. (2009).

DOI: 10.1109/sispad.2009.5290225

Google Scholar

[15] O.M. Orlov, A.A. Chuprik, A.S. Baturin, E.S. Gornev, K.V. Bulakh, K.V. Egorov, A.A. Kuzin, D.V. Negrov, S.A. Zaytsev, A.M. Markeev, Yu.Yu. Lebedinsky, A.V. Zablotskyi, Nonvolatile memory cells based on the effect of resistive switching in depth-graded ternary Hf x Al 1− x O y oxide films. Russian Microelectronics, 43(4) (2014).

DOI: 10.1134/s1063739714040088

Google Scholar

[16] J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, & T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano letters, 12(8) (2012) 4318-4323.

Google Scholar

[17] O.M. Orlov, D.D. Voronov, R.A. Izmailov, & G.Y. Krasnikov, Investigation of the features of integrating nonvolatile FRAM elements with CMOS technology. Russian Microelectronics, 46(5) (2017) 353-358.

DOI: 10.1134/s1063739717050067

Google Scholar

[18] O.M. Orlov, A.M. Markeev, A.V. Zenkevich, A.G. Chernikova, M.V. Spiridonov, R.A. Izmaylov, & E.S. Gornev, Investigation of the properties and manufacturing features of nonvolatile FRAM memory based on atomic layer deposition. Russian Microelectronics, 45(4) (2016).

DOI: 10.1134/s1063739716040077

Google Scholar