Surface Characteristics of Base Metal Dental Alloys Processed by Alternative Procedures

Article Preview

Abstract:

Technological developments in the field of based metal alloys have led to the implementation of novel manufacturing processes in dental practice. The aim of the study was to evaluate surface characteristics of Co–Cr dental alloys fabricated via conventional casting, computerized milling, selective laser sintering and selective laser melting. The morphology and the topography of the samples were investigated by SEM / EDAX (Model INSPECT S) and AFM (Model Nanosurf® EasyScan 2 Advanced Research). Depending on the nature and chemical composition of the samples the morphology is different. The microstructure of Co–Cr dental alloys depends on the manufacturing technique. Given to the differences in microstructural properties among the tested specimens, further differences in their technological achievement and clinical behavior can be anticipated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

July 2017

Export:

Price:

[1] E.J. Bae, H.Y. Kim, W.C. Kim, J.H. Kim, In vitro evaluation of the bond strenhgt between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering, J. Adv Prosthodont, 7 (2015) 312-6.

DOI: 10.4047/jap.2015.7.4.312

Google Scholar

[2] G. Pompa, S. di Carlo, F. De Angelis, M.P. Cristalli, S. Annibali, Comparison of conventional methods and laser-assisted rapid-prototyping for manufacturing fixed dental prostheses: an in vitro study, Biomed. Res. Int. (2015) 318097.

DOI: 10.1155/2015/318097

Google Scholar

[3] B. Qian, K. Saeidi, L. Kvetkova, F. Lofaj, C. Xiao, Z. Shen, Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting, Dent. Mater, (2015), http: /dx. doi. org/10. 1016/j. dental. 2015. 09. 003.

DOI: 10.1016/j.dental.2015.09.003

Google Scholar

[4] T. Akova, Y. Ucar, A. Tukay, MC. Balkaya, WA. Brantley, Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porelain, Dent. Mater. 24 (10) (2008) 1400-4.

DOI: 10.1016/j.dental.2008.03.001

Google Scholar

[5] Y. Liu, Z. Wang, B. Gao, X. Zhao, X. Lin, J. Wu, Evaluation of mechanical properties and porcelai bonded strength of nickel-chromium dental alloy fabricated by laser rapid forming, Lassers Med. Sci. 25 (6) (2010) 799-804.

DOI: 10.1007/s10103-009-0690-3

Google Scholar

[6] A. Barazanchi, K. c. Li, B. Al-Amleh, K. Lyons, J.N. Waddell, Additive technology: update on current materials and applications in dentistry, Journal of Prosthodontics, 00 (2016) 1-8.

DOI: 10.1111/jopr.12510

Google Scholar

[7] G.C. Li, X.J. Tian, X. Cheng, B. He, H.M. Wang, Microstructure properties of a novel titanium alloy Ti-6Al-2V-1. 5Mo-0. 5Zr-0. 3Si manufactured by laser additive manufacturing, Mat. Sci. Eng, accepted Nov. 2016 http: /dx. doi. org/10. 1016/j. msea. 2016. 11. 084.

DOI: 10.1016/j.msea.2016.11.084

Google Scholar

[8] E. Atzeni, A. Salmi, Evaluation of additive manufacturing (AM) techniques for the production of metal-ceramic dental restorations, Journal of Manufacturing Processes, 20 (2015) 40-45.

DOI: 10.1016/j.jmapro.2015.09.010

Google Scholar

[9] V. Despa, I. Gh. Gheorghe, Study of selective laser sintering-a qualitative and objective approach, Sci. Bul. Valahia University, Mat. Mech, 6 (2011) 150-155.

Google Scholar

[10] A. Takaichia, T. Nakamotoc, N. Jokod, N. Nomurad, Y. Tsutsumbi, S. Migitab, Microstructure and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications, J. Mech. Behav Biomed Mater 21 (2013).

Google Scholar

[11] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia, 117 (2016) 371-392.

DOI: 10.1016/j.actamat.2016.07.019

Google Scholar

[12] A.S. Guilherme, G.E.P. Henriques, R.A. Zavanelli, M.F. Mesquita, Surface rougness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols, Journal of Prosthetic Dentistry, 93, (2005) 378-385.

DOI: 10.1016/j.prosdent.2005.01.010

Google Scholar

[13] A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor, Surface texture metrology for metal additive manufacturing: a review, Precision Engineering 46 (2016) 34-47.

DOI: 10.1016/j.precisioneng.2016.06.001

Google Scholar

[14] J. Li, C. Chen, J. Liao, L. Liu, X. Ye, S. Lin, J. Ye, Bond strengths of porcelain to cobalt-chromium alloys made by casting, milling, and selective laser melting, Journal of Prosthetic Dentistry, available online 4 Dec. (2016).

DOI: 10.1016/j.prosdent.2016.11.001

Google Scholar

[15] G. Guan, M. Hirsch, W.P. Syam, R.K. Leach, Z. Huang, AT. Clare, Loose powder detection and surface characterization in selective laser sintering via optical coherence tomography, Proc. Math. Phys. Eng. Sci. 472 (2016) (2191): 20160201.

DOI: 10.1098/rspa.2016.0201

Google Scholar

[16] J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, M.A. Peltz. Characterization of metal powders used for additive manufacturing, J. Res. Nat. Institute of Standards and Technology, 199 (2014) 460-493.

DOI: 10.6028/jres.119.018

Google Scholar