Dispersion in Metal Foam: A Pore Scale Numerical Study

Article Preview

Abstract:

We determine thermal dispersion in metal foams using a pore scale numerical approach. Samples are contained in a channel crossed by a steady fully established fluid flow. The size of the foam sample is chosen according to a Representative Elementary Volume (REV).Two configurations are tested with several foam structures, pore size and pore shape. In the first configuration, heat and mass fluxes are in the same direction, in the second one, fluxes are perpendicular such as in heat exchanger. Results obtained on apparent fluid phase conductivity are discussed along with pressure drop data and compared to available literature data.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

410-415

Citation:

Online since:

April 2012

Export:

Price:

[1] S. Mahjoob and K. Vafai, Int. J. Heat Mass Transfer Vol. 51, 28 March 2008 (2008).

Google Scholar

[2] J. Banhart, Progress in materials Science Vol. 46, pp.559-632, (2001).

Google Scholar

[3] J. Dairon and Y. Gaillard, Casting parts with CTIF foams, " in MetFoam, 09, Brastislava, (2009).

Google Scholar

[4] M. L. Hunt and C. L. Tien, Int. J. Heat Mass Transfer Vol. 31, pp.301-309, (1988).

Google Scholar

[5] A. Amiri and K. Vafai, Int. J. Heat Mass Transfer Vol. 37, pp.939-954, (1994).

Google Scholar

[6] J. -M. Hugo, et al., From pore scale numerical simulation of conjugate heat transfer in cellular material to effectives transport properties of real structures, in IHTC 14, Washington, (2010).

DOI: 10.1115/ihtc14-22692

Google Scholar

[7] S. Whitaker, The Method of Volume Averaging vol. 13: Kluwer Academic Publisher.

Google Scholar

[8] J. M. P. Q. Delgado, Chemical Eng. Research and Design Vol. 85, pp.1245-1252, (2007).

Google Scholar

[9] C. Hutter, et al., Chemical Engineering Science Vol. 66, pp.1132-1141, (2011).

Google Scholar

[10] Y. Jobic, et al., Dispersion en milieu poreux : approche LBM des transferts dans les mousses métalliques, " in SFT, 2011, Perpignan, (2011).

Google Scholar

[11] C. Yang and A. Nakayama, Int. J. Heat Mass Transfer Vol. 53, pp.3222-3230, (2010).

Google Scholar

[12] J. C. F. Pereira, et al., Int. J. Heat Mass Transfer Vol. 48, pp.1-14, (2005).

Google Scholar

[13] J. -M. Hugo and F. Topin, Mesures et modélisation des propriétés effectives de mousse métalliques : Impact sur le design d'échangeur, in SFT, Perpignan, (2011).

Google Scholar

[14] E. Brun, et al., Advanced material Engineering Vol. 21, (2009).

Google Scholar

[15] J. -P. Bonnet, et al., Transport in Porous Media Vol. 73, pp.233-254, (2008).

Google Scholar

[16] J. -M. Hugo, et al, Defect and Diffusion Forum pp.297-301 (2010).

Google Scholar