Luminescence Intensity Enhancement of Copper Doped Hydronium Alunite Synthesized under Hydrothermal Conditions Using Sulfates Solution

Article Preview

Abstract:

A novel phosphor, copper doped hydronium alunite ((H3O)Al3(SO4)2(OH)6:Cu), exhibiting a blue photoluminescence peak at a wavelength of 420 nm was successfully synthesized from aluminum and copper sulfates solution under hydrothermal condition (240 °C, 60 min). The measurement of XRD revealed that the obtained products were single phase with a crystal structure of (H3O)Al3(SO4)2(OH)6. Luminescence intensity of (H3O)Al3(SO4)2(OH)6:Cu synthesized from sulfates solution was 6.2 times higher than that from an aluminum nitrate solution mixed with an elemental sulfur and a copper nitrate solution. The increase of luminescence intensity was resulted from an improvement of the crystallinity of (H3O)Al3(SO4)2(OH)6.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

October 2014

Export:

Price:

* - Corresponding Author

[1] K. M. Scott, Am. Mineral. Vol. 72 (1987), p.178.

Google Scholar

[2] G. A. Lager, G. A. Swayze, C. –K. Loong, F. J. Rotella, J. W. Richardson, Jr. and R. E. Stoffregen, Can. Mineral. Vol. 39 (2001), p.1131.

Google Scholar

[3] R. L. Parker, Am. Mineral. Vol. 47 (1962), p.127.

Google Scholar

[4] S. Lizzo, A. Meijerink, G. J. Dirksen and G. Blasse, Chem. Phys. Lett. Vol. 253 (1996), p.108.

Google Scholar

[5] N. Yamashita, Jpn. J. Appl. Phys. Vol. 30 (1991) , p.3335.

Google Scholar

[6] J. Dedecek, Z. Sobalik, Z. Tvaruazkova, D. Kaucky, B. Wichterlova, J. Phys. Chem. Vol. 99 (1995) , p.16327.

DOI: 10.1021/j100044a020

Google Scholar

[7] E. Borsella, A. Dal Vecchio, M. A. Garcìa, C. Sada, F. Gonella, R. Polloni, A. Quaranta, and L. J. G. W. van Wilderen, J. Appl. Phys. Vol. 91 (2002) , p.90.

DOI: 10.1063/1.1421241

Google Scholar

[8] T. Kurobori, S. Taniguchi and N. Takeuchi, J. Lumin. Vol. 55 (1993) , p.183.

Google Scholar

[9] T. Kurobori, H. Yonezawa and N. Takeuchi, J. Lumin. Vol. 59 (1994) , p.157.

Google Scholar

[10] Y. Kuroki, N. Iwata, T. Hatsuse, T. Okamoto and M. Takata, IOP Conf. Series: Materials Scienceand Engineering Vol. 21 (2011) , pp.012004-1.

Google Scholar

[11] Y. Kuroki, N. Iwata, T. Okamoto and M. Takata, Ceramics International Vol. 38S (2012), p. S567.

Google Scholar

[12] J. Majzlan, R. Stevens, J. Boerio-Goates, B.F. Woodfield, A. Navrotsky P.C. Burns, M.K. Crawford, T.G. Amos, Phys. Chem. Minerals Vol. 31 (2004), p.518.

DOI: 10.1007/s00269-004-0405-z

Google Scholar

[13] A.N. Yerpude, S.P. Puppalwar, S.J. Dhoble, A. Kumar, Ind. J. Pure Appl. Phys. Vol. 47 (2009), p.447.

Google Scholar

[14] K. Momma and F. Izumi, J. Appl. Crystallogr. Vol. 44 (2011), p.1272.

Google Scholar