Interface Migration with Segregation in MoSi2-Based Lamellar Alloy Simulated by Phase-Field Method

Article Preview

Abstract:

MoSi2–based alloys are attracting attention as ultra-high temperature structural material for super-high efficiency gas turbine power generation systems. In this study, the effects of Cr-and Zr-addition on interface migration in MoSi2/NbSi2 lamellar silicide were examined by phase field simulations employing the segregation energies evaluated by the first principles calculation in addition to thermodynamic free energy in order to take into account the chemically-driven interfacial segregation. The simulation results indicate that both Cr and Zr can segregate at the lamellar interface to suppress its migration, and the Zr-addition is more effective to lower the interface migration rate than the Cr-addition owing to its higher segregation energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

832-837

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] Y. Umakoshi, T. Sakagami, T. Hirano, T. Yamane, Acta Metar. 38 (1990) 909.

Google Scholar

[2] T. Nakano, M. Kishimoto, D. Furuta, Y. Umakoshi, Acta Mater. 48 (2000) 3465.

Google Scholar

[3] H. Inui, K. Ishikawa, M. Yamaguchi, Intermetallics. 8 (2000) 1131.

Google Scholar

[4] K. Hagihara, T. Nakano, S. Hata, O. Zhu, Y. Umakoshi, Scripta Mater. 62 (2010) 613.

Google Scholar

[5] K. Hagihara, Y. Hama, K. Yuge, T. Nakano, Acta Mater. 61 (2013) 3432.

Google Scholar

[6] K. Yuge, Y. Koizumi, K. Hagihara, T. Nakano, K. Kishida, H. Inui, Intermetallics 42 (2013) 165.

DOI: 10.1016/j.intermet.2013.06.009

Google Scholar

[7] T. Yamazaki, Y. Koizumi, A. Chiba, K. Hagihara, T. Nakano, K. Yuge, K. Kishida and H. Inui, MRS Proc. 1516 (2013) 391. [doi : 10. 1557/opl. 2013. 391].

DOI: 10.1557/opl.2013.360

Google Scholar

[8] T. Geng, C. Li, X. Zhao, H. Xu, Z Du, C. Guo, CALPHAD 34 (2010) 363.

Google Scholar

[9] G. Shao, Intermetallics 13 (2005) 69.

Google Scholar

[10] J. J. Petrovic, Mater Sci Eng A. 192 (1995) 31.

Google Scholar

[11] J. W. Cahn, J. E. Hilliard, J. Chem. Phys. 28 (1958) 258.

Google Scholar

[12] S. M. Allen, J. W. Cahn, Acta Metar. 27 (1979) 1085.

Google Scholar