Rheological Studies of an Injectable Radiopaque Hydrogel for Embolization of Abdominal Aortic Aneurysms

Article Preview

Abstract:

Several embolizing agents have been tested for minimally invasive treatment of intracranial aneurysms, and more recently to prevent or treat persistent blood flow (endoleaks) in abdominal aortic aneurysms. However, frequent recurrence of endoleaks was seen in most studies, suggesting that current embolization agents are not satisfying yet. Here we report rheological studies of a radiopaque chitosan hydrogel as an embolizing agent. The aim is to provide an agent that would be visible during x-ray based guided interventions. In this study, a commercial contrast agent (iopamidol) was associated to chitosan at different concentrations and its influence on the rheological behavior of chitosan thermogel was evaluated. The resulting hydrogels have a homogenous coherent structure. The addition of iopamidol leaded to an initially more viscous solution. To have a good visibility of hydrogel via x-ray, an optimum iopamidol concentration of 20% v/v was chosen. The addition of 20% v/v iopamidol increased the gelation time. The use of a high βGP concentration constitutes a solution to overcome the slowing down of gelation by 20% v/v iopamidol. Formulations containing around 16-20% βGP provides viscous solutions which rapidly gel and could be promising injectable radiopaque hydrogels for embolization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-135

Citation:

Online since:

November 2011

Export:

Price:

[1] M. P. Armon, S. W. Yusuf, S. C. Whitaker, R. H. Gregson, P. W. Wenham, B. R. Hopkinson, Thrombus distribution and changes in aneurysm size following endovascular aortic aneurysm repair, Eur J Vasc Endovasc Surg 16 (1998) 472-6.

DOI: 10.1016/s1078-5884(98)80236-0

Google Scholar

[2] G. B. Torsello, E. Klenk, B. Kasprzak, T. Umscheid, Rupture of abdominal aortic aneurysm previously treated by endovascular stentgraft, J Vasc Surg 28 (1998) 184-7.

DOI: 10.1016/s0741-5214(98)70214-9

Google Scholar

[3] M. L. Martin, B. L. Dolmatch, P. D. Fry, L. S. Machan, Treatment of type II endoleaks with Onyx, J Vasc Interv Radiol 12 (2001) 629-32.

DOI: 10.1016/s1051-0443(07)61489-4

Google Scholar

[4] S. W. Stavropoulos, H. Kim, T. W. Clark, R. M. Fairman, O. Velazquez, J. P. Carpenter, Embolization of type 2 endoleaks after endovascular repair of abdominal aortic aneurysms with use of cyanoacrylate with or without coils, J Vasc Interv Radiol 16 (2005).

DOI: 10.1097/01.rvi.0000156495.66062.62

Google Scholar

[5] M. Zanchetta, F. Faresin, L. Pedon, M. Riggi, S. Ronsivalle, Fibrin glue aneurysm sac embolization at the time of endografting, J Endovasc Ther 12 (2005) 579-82.

DOI: 10.1583/05-1574mr.1

Google Scholar

[6] B. P. Barnett, A. H. Hughes, S. Lin, A. Arepally, P. H. Gailloud, In vitro assessment of EmboGel and UltraGel radiopaque hydrogels for the endovascular treatment of aneurysms, J Vasc Interv Radiol 20 (2009) 507-12.

DOI: 10.1016/j.jvir.2009.01.005

Google Scholar

[7] Y. C. Chung, C. Y. Chen, Antibacterial characteristics and activity of acid-soluble chitosan, Bioresour Technol 99 (2008) 2806-2814.

DOI: 10.1016/j.biortech.2007.06.044

Google Scholar

[8] A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, A. Selmani, Novel injectable neutral solutions of chitosan form biodegradable gels in situ, Biomaterials 21 (2000) 2155-61.

DOI: 10.1016/s0142-9612(00)00116-2

Google Scholar

[9] J. Cho, M. C. Heuzey, A. Begin, P. J. Carreau, Physical gelation of chitosan in the presence of beta-glycerophosphate: The effect of temperature, Biomacromolecules 6 (2005) 3267-75.

DOI: 10.1021/bm050313s

Google Scholar

[10] A. Chenite, M. Buschmann, D. Wang, C. Chaput, N. Kandani, Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohydr Polym 46 (2001) 39-47.

DOI: 10.1016/s0144-8617(00)00281-2

Google Scholar

[11] H. H. Winter, Can the gel point of a cross-linking polymer be detected by the G'–G" crossover?, Polym Eng Sci 27 (1987) 1698-1701.

DOI: 10.1002/pen.760272209

Google Scholar

[12] J. Cho, M. C. Heuzey, A. Bégin, P. J. Carreau, Chitosan and glycerophosphate concentration dependence of solution behaviour and gel point using small amplitude oscillatory rheometry, Food Hydrocolloids 20 (2006) 936-945.

DOI: 10.1016/j.foodhyd.2005.10.015

Google Scholar

[13] M. Lavertu, D. Filion, M. D. Buschmann, Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation, Biomacromolecules 9 (2008) 640-50.

DOI: 10.1021/bm700745d

Google Scholar

[14] A. Chenite, S. Gori, M. Shive, E. Desrosiers, M. D. Buschmann, Monolithic gelation of chitosan solutions via enzymatic hydrolysis of urea, Carbohydr Polym 64 (2006) 419-424.

DOI: 10.1016/j.carbpol.2005.12.010

Google Scholar

[15] J. Ngoenkam, A. Faikrua, S. Yasothornsrikul, J. Viyoch, Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function, Int J Pharm 391 (2010) 115-124.

DOI: 10.1016/j.ijpharm.2010.02.028

Google Scholar

[16] R. Ahmadi, J. D. De Bruijn, Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels, J Biomed Mater Res A 86 (2008) 824-32.

DOI: 10.1002/jbm.a.31676

Google Scholar