Controlled Crystallization Synthesis of Porous FePO4·3H2O Micro-Spheres for Fabricating High Performance LiFePO4/C Cathode Materials

Article Preview

Abstract:

Amorphous porous FePO4·3H2O micro-spheres were synthesized via a controlled crystallization method. These micro-spheres have a particle size distribution from 10 to 28 μm. There are larger numbers of pores on the surface of FePO4·3H2O microspheres, which are important to synthesize high performance LiFePO4 cathode materials for the application of lithium ion battery. The electrochemical properties of the LiFePO4/C electrode, preparing by using the above porous spherical FePO4·3H2O particles, were measured. The electrochemical results show that the obtained LiFePO4/C has a high initial discharge specific capacity of 141.4 mAhg-1 and good cycling performance at 0.5 C. The microstructural and electrochemical analyses indicate that this porous spherical FePO4·3H2O is a fascinating precursor for preparing LiFePO4/C cathode materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1510-1514

Citation:

Online since:

November 2011

Export:

Price:

[1] R. Lin, Y. Ding, L. Gong, W. Dong, J. Wang and T. Zhang: J. Catal. Vol. 272 (2010), p.65

Google Scholar

[2] K. Kandori, T. Kuwae and T. Ishikawa: J. Colloid Interface Sci. Vol. 300 (2006), p.225

Google Scholar

[3] C. Masquelier, P. Reale, C. Wurm, M. Morcrette, L. Dupont and D. Larcher: J. Electrochem. Soc. Vol.149 (2002), p. A1037

Google Scholar

[4] T.K. Pietrzak, L. Wewior, J.E. Garbarczyk, M. Wasiucionek, I. Gorzkowska, J.L. Nowinski and S. Gierlotka: Solid State Ionics. Vol. 188 (2011), p.99

DOI: 10.1016/j.ssi.2010.11.006

Google Scholar

[5] W.K. Zhang, X.Z. Zhou, X.Y. Tao, H. Huang, Y.P. Gan and C. T. Wang: Electrochim. Acta. Vol. 55 (2010), p.2592

Google Scholar

[6] Y.N. Song, S.F. Yang, P.Y. Zavalij, and M.S. Whittingham: Mater. Res. Bull. Vol. 37 (2002), p.1249

Google Scholar

[7] Y.Y. Xia, W.J. Cui, H.J. Liu, and C.X. Wang: Electrochem. Commun. Vol. 10 (2008), p.1587

Google Scholar

[8] A. Kahoul and A. Hammouche: Ionics. Vol. 16 (2009), p.105

Google Scholar

[9] S. Scaccia, M. Carewska, A. Di Bartolomeo and P.P. Prosini: Thermochimica Acta. Vol. 383 (2002), p.145

DOI: 10.1016/s0040-6031(01)00686-4

Google Scholar

[10] R.S. Wang, H.M. Xie, J.R. Ying, L.Y. Zhang, A.F. Jalbout, H.Y. Yu, G.L. Yang, X.M. Pan and Z.M. Su: Adv. Mater. Vol. 18 (2006), p.2609

Google Scholar

[11] J.R. Ying, M. Lei, C.Y. Jiang, C.R. Wan, X.M. He, J.J. Li, L. Wang and J.G. Ren: J. Power Sources. Vol. 158 (2006), p.543

Google Scholar

[12] Z.C. Shi, Y.X. Li, W.L. Ye and Y. Yang: Electrochem. Solid-State. Lett. Vol. 8 (2005), p.A396

Google Scholar

[13] B.Y. Geng, S.Z. Wang, Q. Wang, J. Liu, Z.G. Cheng and D.J. Si: CrystEngComm. Vol. 11 (2009), p.2510

Google Scholar

[14] Y. Xia, W. K. Zhang, H. Huang, Y.P. Gan, J. Tian and X.Y. Tao: J. Power Sources. Vol. 196 (2011), p.5651

Google Scholar

[15] Y. Xia, W.K. Zhang, H. Huang, Y.P. Gan, Z. Xiao, L.C. Qian and X.Y. Tao: J. Mater. Chem. Vol. 21 (2011) , p.6498

Google Scholar

[16] G.T.K. Fey, Y.D. Cho and H.M. Kao: J. Power Sources. Vol. 189 (2009), p.256

Google Scholar

[17] A.K. Padhi, K.S. Nanjundaswamy and J.B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1188

Google Scholar