Sustainable Mortar for Cobogó Production

Article Preview

Abstract:

The aim of this work is a development and characterization of a sustainable product from solid waste from civil construction. Morphology of collected waste has been analyzed by SEM/EDS. Residues have been macerated, mixed in different proportions with cement and water, and made into rectangular boxes. Mechanical test has been carried out by flexing three points on specimens, absorbing water and analyzing fracture by SEM. Morphology of samples have shown a heterogeneous and porous mass, with particles of different sizes, few agglomerates, and presence of organic material. Resistance to average rupture of samples has been obtained in MPa, characteristic of concrete for structural application. For CDR to be used in sustainable ceramics, it is recommended to improve a process of comminution and homogenization to guarantee reproducibility of lots and technological product properties. This being so, a mockup has been developed proposing a hollow element type product, Cobogó style, indicating potential of using civil construction waste as a sustainable product.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-33

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] I.V.L. Paiva. Análise da viabilidade econômica e ambiental para a criação de uma usina de reciclagem de resíduos da construção civil em uma abordagem simbiótica: um estudo para a região metropolitana de Natal. 155f. (2016) Dissertação (Mestrado em Engenharia de Produção) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal.

DOI: 10.11606/t.85.2016.tde-22082016-154803

Google Scholar

[2] C. Arena, S. Catuogno, S. Saggese, F. Sarto (2020). Female Directors and Innovation in Public Hospitals. In: Paoloni P., Lombardi R. (eds) Gender Studies, Entrepreneurship and Human Capital. IPAZIA 2019. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-46874-3_1.

DOI: 10.1007/978-3-030-46874-3_1

Google Scholar

[3] E.S. Pinto. Reciclar, reduzir, reutilizar, repensar, recusar, inseridos na avaliação quantitativa em um estágio da saúde da criança.  Caderno de Educação, Saúde e Fisioterapia, v. 5, n. 10 (2018).

Google Scholar

[4] Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. Information on http://abrelpe.org.br/panorama/ access 30 jun. (2020).

Google Scholar

[5] V.B.O. Santos, Cobogó brise: cobogó com abertura regulável. 2018. 149 f. Trabalho de Conclusão de Curso (Graduação em Desenho Industrial - Projeto de Produto) - Escola de Belas Artes, Universidade Federal do Rio de janeiro, Rio de Janeiro, (2018).

DOI: 10.20396/eha.1.2005.3598

Google Scholar

[6] K. Balke, A. Beier, U.T. Bornscheuer, Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnology advances, 2018 Volume 36, Issue 1, January–February 2018, Pages 247-263.

DOI: 10.1016/j.biotechadv.2017.11.007

Google Scholar

[7] W. Duan, W. Li, Q. Tang, Y. Zhao, X. Guo, G. Yang, Laccase‐Mimicking Syntheses of Phenoxazinones by Aerobic Oxidative Homo ‐ and Hetero‐Dimerizations of Aminophenols. ChemistrySelect 2021, 6 (10),2504- 507. https://doi.org/10.1002/slct.202100725.

DOI: 10.1002/slct.202100725

Google Scholar

[8] J.A. da Motta, R.R. Alves, C.F. Fleck, Moda sustentável: uma análise sobre práticas divulgadas por empresas da região de Porto Alegre – RS / Sustainable fashion: an analysis on practices disseminated by companies in the region of Porto Alegre – RS, Brasil Jornal of Development, Vol 6, No 9 (2020), Https://Doi.Org/10.34117/Bjdv6n9-442.

DOI: 10.34117/bjdv6n9-442

Google Scholar

[9] S. Holladay, P. Egbert, Hybridizing education of both video games and animated films, SIGGRAPH Asia 2018 Technical Briefs, 2018, https://doi.org/10.1145/3283254.3283272.

DOI: 10.1145/3283254.3283272

Google Scholar

[10] A.Z. Nelson, Extending yield-stress fluid paradigms, Journal of Rheology 62, 357; https://doi.org/10.1122/1.5003841 (2018).

Google Scholar

[11] R.L. Thompson and  P.R.S. Mendes, Rheological material functions at yielding. Journal of Rheology 64, 615 (2020); https://doi.org/10.1122/1.5126491.

Google Scholar

[12] M.F. Ashby and K. Johnson, Materials and Design – the Art and Science of Materials Selection in Product Design,, Butterworth Heinemann, Oxford, UK. (2002) ISBN0-7506-5554-2. (A book that develops further the ideas outlined in this paper).

Google Scholar

[13] K.S. Barros, Identification of the environmental impacts contributors related to the use of Additive Manufacturing Technologies, Chemical and Process Engineering. Université Grenoble Alpes (2017).

Google Scholar

[14] K. Salonitis, Energy Efficiency of Metallic Powder Bed Additive Manufacturing Processes. In: Muthu S., Savalani M. (eds) Handbook of Sustainability in Additive Manufacturing. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore (2016).

DOI: 10.1007/978-981-10-0606-7_1

Google Scholar

[15] S. Ford and M. Despeisse, Can additive manufacturing be a driving force for sustainable industrial systems? Journal of Cleaner Production. Advanced Manufacturing for Sustainability and Low Fossil Carbon Emissions,, July (2015).

Google Scholar

[16] J.S. Albert, G. Destouni, S.M. Duke-Sylvester, et al. Scientists' warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021). https://doi.org/10.1007/s13280-020-01318-8.

DOI: 10.1007/s13280-020-01318-8

Google Scholar

[17] E.B. Barbier, Editorial — The Economics of Aquatic Ecosystems: An Introduction to the Special Issue, Water Economics and Policy Vol. 03, No. 02, 1702002 (2017). Information on https://doi.org/10.1142/S2382624X17020027.

DOI: 10.1142/s2382624x17020027

Google Scholar

[18] A.C. Juliane, J.G. Marcel, A.V. Deisi, B,B.T. Lorena, Treatment of the textile wastewater through fungi: a sustainable alternative. Sustainability in Debate / Sustentabilidade em Debate. 2018, Vol. 9 Issue 1, pp.198-213. 16p.

Google Scholar

[19] F. Wang, C. Ding, D. Liu, Bi, J. Design of real-time monitoring and intelligent management cloud platform for entire process of construction waste, IOP Conference Series: Earth and Environmental Science, 310 022052 (2019).

DOI: 10.1088/1755-1315/310/2/022052

Google Scholar

[20] Associação Brasileira de Normas Técnicas. NBR NM-ISO 2395: Peneira de Ensaio e Ensaio de Peneiramento. Rio de Janeiro, (1997).

Google Scholar

[21] ASTM C 674-13, 2013. Standard Test Methods for Flexural Properties of Ceramic Whiteware Materials. ASTM D 422 – 63, (2007). In: Standard Test Method for Particle-Size Analysis of Soils.

Google Scholar