Comparative Study on Multifunctional Behaviors of La0.7Ca0.3MnO3 and La0.7Ca0.24Sr0.06MnO3 Single Crystals

Article Preview

Abstract:

We report the electrical-transport, magneto-transport, and magnetic properties of the hole doped La0.7Ca0.3MnO3 (LCMO) and La0.7Ca0.24Sr0.06MnO3 (LCSMO) single crystals, prepared using floating zone technique. The resistivity data shows the metal to insulator transition (TMI) occurs at 211 K and 290 K for LCMO and LCSMO single crystals respectively. The electrical transport mechanisms of these crystals are investigated by using different theoretical models, for temperatures below and above TMI. The magnetization measurements show that these single crystals exhibit ferromagnetic to paramagnetic transition temperature (TC) at 208 K for LCMO and 273 K for LCSMO single crystals. From device application point of view, both samples show the maximum MR of 98% for LCMO and 80% for LCSMO at 8 T applied magnetic field, while for bolometer IR detectors application point of view the temperature coefficient of resistance (TCR) are found to ~17% K-1 and 28% K-1 for LCMO and LCSMO respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-203

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] M. B. Salamon, M. Jaime, The physics of manganites: Structure and transport, Rev. Mod. Phys. 73 (2001) 583–628.

DOI: 10.1103/revmodphys.73.583

Google Scholar

[2] A. P. Ramirez, Colossal magnetoresistance, J. Phys: Condens. Matter. 9 (1997) 8171-8199.

DOI: 10.1088/0953-8984/9/39/005

Google Scholar

[3] M. Talati and P. K. Jha, Pressure-dependent phonon properties of La0. 7Sr0. 3MnO3, Phys. Rev. B 74 (2006) 134406.

Google Scholar

[4] A. Khare, R. J. Choudhary, and S. P. Sanyal, Structural, electrical and magnetic properties of Ce doped La0. 7Ca0. 3MnO3 thin films, J. Appl. Phys. 112 (2012) 023714.

DOI: 10.1063/1.4739306

Google Scholar

[5] T. M. Tank, D. Bhargava, V. Sridharan, S. S. Samatham, V. Ganesan, S. P. Sanyal, Influence of Mn Site Substitution on Electrical Resistivity and Magnetoresistance Properties of Rare Earth Manganite, Adv. Mater. Res. 1047 (2014) 131-139.

DOI: 10.4028/www.scientific.net/amr.1047.123

Google Scholar

[6] M Talati, PK Jha, Pressure-dependent phonon properties of La 0. 7 Sr 0. 3MnO3, Phys. Review B 74 (2006), 134406.

Google Scholar

[7] M Talati and PK Jha, Structure dependent phonon properties of LaMnO3 Comput. Mat. Science 37 (2006) 64-68.

DOI: 10.1016/j.commatsci.2005.12.026

Google Scholar

[8] A. Heredia, F. J. De la Hidalga, A. Torres, A. Jaramillo, Low Temperature Electronics and Low Temperature Co-fired Ceramic Based Electronic Devices, The Electrochemical Society, Orlando, Florida, 2003, pp.881-882.

Google Scholar

[9] Y. Tokura, Critical features of colossal magnetoresistive manganites, Rep. Prog. Phys. 69 (2006) 797-851.

DOI: 10.1088/0034-4885/69/3/r06

Google Scholar

[10] E. O. Wollan, W. C. Koehler, Neutron Diffraction Study of the Magnetic Properties of the Series of Perovskite-Type Compounds [(1−x)La, xCa]MnO3, Phys. Rev. 100 (1995) 545-563.

Google Scholar

[11] J. M. D. Coey, M. Viret, L. Ranno, K. Ounadjela, Electron Localization in Mixed-Valence Manganites, Phys. Rev. Lett. 75 (1995) 3910-3913.

DOI: 10.1103/physrevlett.75.3910

Google Scholar

[12] A. Khare, A. Bodhaye, D. Bhargava, R. J. Choudhary, S. P. Sanyal, Study of Structural, Transport and Magneto-Resistive Properties of La0. 7Ca0. 3-xCexMnO3, Phys. B: Cond. Matt. 404 (2009) 3602–3607.

DOI: 10.1016/j.physb.2009.06.008

Google Scholar

[13] R. Yadav, V. Shelke, Investigation of wide range magnetoresistance in La0. 7Ca0. 3-xAgxMnO3 system, J. Mater Sci: Mater. Elect. 24 (2013) 1141–1145.

DOI: 10.1007/s10854-012-0896-1

Google Scholar

[14] A. Heredia, F. J. De la Hidalga, A. Torres, A. Jaramillo, Low Temperature Electronics and Low Temperature Co-fired Ceramic Based Electronic Devices, The Electrochemical Society, Orlando, Florida, 2003, pp.881-882.

Google Scholar

[15] F. Niklaus, C. Vieider, H. Jakobsen, MEMS-Based Uncooled Infrared Bolometer Arrays – A Review, in: J-C. Chiao, X. Chen, Z. Zhou, X. Li (Eds. ), Proc. SPIE 6836, Proc. SPIE 6836, MEMS/MOEMS Technologies and Applications III, Vol. 6836, Beijing, China, 2008, pp. 68360D.

DOI: 10.1117/12.755128

Google Scholar

[16] M. A. Todd, P. P. Donohue, P. J. Wright, M. J. Crosbie, P. A. Lane, M. -H. Jo, B. S. H. Pang, M. G. Blamire, Colossal magnetoresistive manganite thin-films for infrared detection and imaging, Ann. Phys. (Leipzig) 13 (2004) 48-51.

DOI: 10.1002/andp.200310042

Google Scholar

[17] T. M. Tank, C. M. Thaker, R. S. Chhatrala,V. Ganesan, S. P. Sanyal, Enhancement of Temperature and Field Coefficient of Resistance in CSD Grown Nanostructure La0. 7Ca0. 3MnO3 Thin Films, J. Nano Res. 24 (2013) 155-162.

DOI: 10.4028/www.scientific.net/jnanor.24.155

Google Scholar

[18] H. S. Kim, C. H. Lee, C. E. Lee, K. M. Kim, S. J. Noh, C. S. Hong, N. H. Hur, S. Y. Shim, H. -C. Ri, Oxygen-plasma effects of a La0. 7Ca0. 3MnO3-δ single crystal, Appl. Phys. Lett. 79 (2001) 4177-4179.

DOI: 10.1063/1.1425085

Google Scholar

[19] A. Bodhaye, Ya. M. Mukovskii, G. S. Okram, S. P. Sanyal, Transport, magnetic and thermal properties of La0. 88Ca0. 12MnO3 single crystal, Ind. J. Pur. and Appl. Phys. 45 (2007) 37-39.

Google Scholar

[20] N. G. Bebenin, R. I. Zainullina, N. S. Bannikova, L. V. Elokhina, V. V. Ustinov, Ya. M. Mukovskii, Magnetoresistance of the La0. 7Ca0. 3MnO3 single crystal, The Phys. Met. Metallo. 108 (2009) 232-236.

DOI: 10.1134/s0031918x09090038

Google Scholar

[21] T. M. Tank, A. Bodhaye, Ya. M. Mukovskii, S. P. Sanyal, Accepted in Materials Research Bulletin (2016).

Google Scholar

[22] S. B. Tian, M. H. Phan, S. C. Yu, N. H. Hur, Magnetocaloric effect in a La0. 7Ca0. 3MnO3 single crystal, Phys. B: Cond. Matt. 327 (2003) 221-224.

Google Scholar

[23] P. Lin, S. H. Chun, M. B. Salamon, Y. Tomioka and Y. Tokura, Magnetic heat capacity in lanthanum manganite single crystals, J. Appl. Phys. 87 (2000) 5825-5827.

DOI: 10.1063/1.372535

Google Scholar

[24] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystall. Sect. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[25] C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82 (1951) 403-405.

DOI: 10.1103/physrev.82.403

Google Scholar

[26] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3, Phys. Rev. B. 51 (1995) 14103-14109.

Google Scholar

[27] L. Pi, L. Zheng, Y. Zhang, Transport mechanism in polycrystalline La0. 825Sr0. 175Mn1-xCuxO3, Phys. Rev. B. 61 (2000) 8917-8921.

Google Scholar

[28] M. Ziese, C. Srinitiwarawong, Polaronic effects on the resistivity of manganite thin films, Phys. Rev. B. 58 (1998) 11519-11525.

DOI: 10.1103/physrevb.58.11519

Google Scholar

[29] D. Emin and T. Holstein, Adiabatic Theory of an Electron in a Deformable Continuum Phys. Rev. Lett. 36 (1976) 323-326.

DOI: 10.1103/physrevlett.36.323

Google Scholar

[30] T. M. Tank, A. Bodhaye, Ya. M. Mukovskii, S. P. Sanyal, Transport, Magnetic, and Thermal Properties of La0. 7Ca0. 24Sr0. 06MnO3 Single Crystal, Adv. Cond. Matt. Phy. 2013 (2013) 305308-305311.

Google Scholar