Fabrication of Through-Hole TiO2 Nanotube Arrays by Bilayer Ti Foils Anodization

Article Preview

Abstract:

Through-hole TiO2 nanotube arrays were successfully prepared by using mechanical coupling Ti/Ti foils as anode. By continuously anodization, one Ti foil was thoroughly fabricated into TiO2 nanotube arrays, and the bottom barrier of TiO2 nanotube arrays was extended to the other Ti foil layer. The physical gap between two Ti foils allowed the TiO2 nanotube arrays to be easily separated from the barrier layer. Thus the through-hole TiO2 nanotube arrays were obtained. The method is simple but effective to thoroughly remove the bottom barrier layer and obtain through-hole TiO2 nanotube arrays without any complicated processes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

315-320

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, Surf. Interf. Anal. 27(1999)629.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[2] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, J. Mater. Res. 16 (2001)3331.

Google Scholar

[3] Z. X. Su, W. Z. Zhou, J. Mater. Chem. 21(2011)8955.

Google Scholar

[4] P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50(2011)2904.

Google Scholar

[5] D. Kowalski, D. Kimb, P. Schmuki, Nano Today 8(2013)235.

Google Scholar

[6] G. Liu, K. Wang, N. Hoivik, H. Jakobsen, Sol. Energ. Mat. Sol. C. 98 (2012)24.

Google Scholar

[7] K. Kant, D. Losic, Int. J. Nanosci. 10 (2011)55.

Google Scholar

[8] J. J. Liao, S. W. Lin, X. G. Li, S. P. Li, X. K. Cao, Y. Cao, Cryst. Res. Technol. 47(2012)731.

Google Scholar

[9] Y. Jo, I. Jung, I. Lee, J. Choi, Y. Tak, Electrochem. Commun. 12 (2010)616.

Google Scholar

[10] G. H. Liu, N. Hoivik, K. Y. Wang, H. Jakobsen, J. Mater. Sci. 46(2011)7931.

Google Scholar

[11] S. Kathirvel, C. Su, C. Hsu, S. Y. Ho, B. R Chen, W. R. Li, J. Nanopart. Res. 16(2014)2377.

Google Scholar

[12] J. Schweicher, T. A. Desai, J. Appl. Electrochem. 44(2014) 411.

Google Scholar

[13] Z. Y. Luo, D. C. Mo, S. S. Lu, J. Mater. Sci. 49(2014)6742.

Google Scholar

[14] S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, P. Schmuki, Nano Lett. 7(2007) 1286.

Google Scholar

[15] C. J. Lin,W. Y. Yu,Y. T. Lu, S. H. Chien, Chem. Commun. (2008)6031.

Google Scholar

[16] S. P. Albu, A. Ghicov, S. Berger, H. Jha, P. Schmuki, Electrochem. Commun. 12 (2010) 1352.

Google Scholar

[17] Z. K. Zhang, D. Z. Guo, Y. J. Xing, G. M. Zhang, Appl. Surf. Sci. 257 (2011) 4139.

Google Scholar

[18] X. M. Zhou, N. T. Nguyen, S. Özkan, P. Schmuki, Electrochem. Commun. 46 (2014) 157.

Google Scholar

[19] S. Farsinezhad, A. N. Dalrymple. K. Shankar, Phys. Status. Solidi. A 211(2014) 1113.

Google Scholar