XRD and FTIR Studies of Natural Cellulose Isolated from Pineapple (Ananas comosus) Leaf Fibres

Article Preview

Abstract:

Cellulosic materials derived from pineapple leaves fibers (PALF) which are being wasted after fruit harvested. There are two methods to extract cellulose from PALF. First methods were using sodium hydroxide (NaOH) 2% for alkaline treatment and bleached by sodium hypochlorite (NaClO) and buffer. Second method, cellulose was extracted using peroxyacetic acid delignification and bleached the sample in acidified pH 3 hydrogen peroxide solution. From X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) data’s, it is proven that both samples of cellulose have shown cellulose I structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-201

Citation:

Online since:

February 2015

Keywords:

Export:

Price:

* - Corresponding Author

[1] P. M. Visakh and S. Thomas: Waste Biomass Valor 1 (2010), pp.121-134.

Google Scholar

[2] Y. Habibi, L. A. Lucia, and O. J. Rojas: Chemical Reviews 110 (6), (2010), pp.3479-3500.

Google Scholar

[3] G. Siqueira, J. Bras, and A. Dufresne: Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications, Polymers 2 (2010), pp.729-765.

DOI: 10.3390/polym2040728

Google Scholar

[4] P. M. Visakh and S. Thomas: Preparation of Bionanomaterials and their Polymer Nanocomposites from Waste Biomass, Waste Biomass Valor (2010) 1, pp.121-134.

DOI: 10.1007/s12649-010-9009-7

Google Scholar

[5] A. Thygesen, J. Oddershede, H. Lilholt, A. B. Thomsen, and K. Stahl: On the Determination of Crystallinity and Cellulose content In Plant Fibres, Cellulose (2005) 12, pp.563-576.

DOI: 10.1007/s10570-005-9001-8

Google Scholar

[6] S. M. Sapuan, A. R. Mohamed, J. P. Siregar, and M. R. Ishak: Pineapple Leaf Fibres and PALF-Reinforced Polymer Composites, edited by S. Kalia, B. S. Kaith, and I. Kaur, Cellulose Fibres: Bio- and nano- Polymer Composites, chapter, 12, Springer- Verlag Berlin Heidelberg (2011).

DOI: 10.1007/978-3-642-17370-7_12

Google Scholar

[7] P. S. Mukherjee and K. G. Satyanarayana: Journal of Materials Science 21 (1986), pp.51-56.

Google Scholar

[8] B. M. Cherian, A. L. Leao, S. F. De Souza, S. Thomas, L. A. Pothan and, M. Kottaisamy: Carbohydrate Polymers 81 (2010), pp.720-725.

DOI: 10.1016/j.carbpol.2010.03.046

Google Scholar

[9] W. Li, R. Wang, and S. Liu: Bioresourse. com 6 (4), (2011), pp.4271-4281.

Google Scholar

[10] X. J. Jin and D. P. Kamdem: Cellulose Chemistry and Technology 43(7-8), (2009), pp.229-234.

Google Scholar

[11] Wada M, Okana, T, Sugyama J, Journal Wood Science 47(2001), pp.124-128.

Google Scholar

[12] T. Kondo and C, Sawatari: Polymer 37(3), (1996), pp.393-399.

Google Scholar

[13] M. L. Nelson, and R.T. O'Connor: Journal of Applied polymer Science 8, (1964) pp.1311-1324.

Google Scholar

[14] M. Schwanninger, J.C. Rodrigues, H. Pereira, & B. Hinterstoisser: Vibrational Spectroscopy 36, (2004), pp.23-40.

Google Scholar

[15] J. J. Cael, K. H. Gardner, J. L. Koenig, J. J. Blackwell: Chemical Physics 62, (1975) pp.1145-1153.

Google Scholar

[16] X. Colom and F. Carrillo: European Polymer Journal 38, (2002) pp.2225-2230.

Google Scholar

[17] Y. Cao and H. J. Tan: Journal of Molecular Structure 705, (2004) pp.189-193.

Google Scholar

[18] S. Y. Oh, D. I. Yoo, and G. Seo: Carbohydrate Research 340, (2005) p.417.

Google Scholar

[19] C. Y. Liang and R. H. Marchessault: Polymer Science 39, (1959) pp.269-278.

Google Scholar

[20] M. Kaćuráková, P. Capek, V. Sasinková , N Wellner and A. Ebringerová: Carbohydrate Polymer 43, (2000) pp.195-203.

Google Scholar

[21] Y. Marechal and H. Chanzy: Journal of Molecular Structure 523, (2000) pp.183-196.

Google Scholar

[22] J. Sugiyama, J. Persson and H. Chanzy: Macromolecles 24, (1991) pp.2461-2466.

Google Scholar