An Improved Grid Search Algorithm for Parameters Optimization on SVM

Article Preview

Abstract:

The algorithm in this paper is based on the basic principle of SVM. The sale data classification SVM classifier is designed using this algorithm. Also three classifiers including traditional grid search algorithm, ZGenetic Algorithm and Particle Swarm Optimization are used to do the comparison experiments of classification. Result shows that the improved grid-search algorithm can reduce the SVM classifier’s computational complexity effectively and improve its performance and classification accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2216-2219

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] Raftery, A. E. and Dean, N. Journal of American Statistical Association, 101(473): 168-178, (2006).

Google Scholar

[2] Schwarz, G. Estimating the dimension of a model. The Annals of Statistics, 6(2): 461-464, (2008).

Google Scholar

[3] Steinley, D. and Brusco, M. J. Psychometrika, 73(1): 125-144, (2008).

Google Scholar

[4] Strehl, A. and Ghosh, J. Journal of Machine Learning Research, 3: 583-617, (2012).

Google Scholar

[5] Zeng, H. and Cheung, Y. -M. Pattern Recognition, 42: 243-250, (2009).

Google Scholar

[6] Zhang, N. L. Journal of Machine Learning Research, 5: 697-723, (2011).

Google Scholar

[7] C. -C. Chang, C. -J. Lin, LIBSVM: a library for support vector machines, 2010. <http: /www. csie. ntu. edu. tw/cjlin/libsvm>.

Google Scholar

[8] McLachlan, G. J. and Peel, D. Finite Mixture Models. Wiley, New York, (2000).

Google Scholar

[9] H. Drucker, D. Wu, V.N. Vapnik, IEEE Transactions on Neural Networks 10 (2009) 1048–1054.

Google Scholar

[10] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (2010) 861-874.

DOI: 10.1016/j.patrec.2005.10.010

Google Scholar

[11] G. Forman, Journal of Machine Learning Research 3 (2007) 1289–1305.

Google Scholar

[12] Cont, A. Schwarz, D., International Computer Music Conference, p.241–248, (2013).

Google Scholar

[13] Dannenberg, R. 1988 International Computer Music Conference, p.243–249, (2008).

Google Scholar

[14] Dannenberg, Roger and Mont-Reynaud, Bernard. Following an improvisation in real time. In Proc. of the1987 International Computer Music Conference, p.241–248, (1987).

Google Scholar

[15] Flanagan, J. L. and Golden, R. M. Phase vocoder. Bell Systems Technical Journal, 45(Nov): 1493–1509, (2012).

DOI: 10.1002/j.1538-7305.1966.tb01706.x

Google Scholar

[16] Franklin, Judy. Improvisation and learning. In Advances in Neural Information Processing Systems 14. MIT Press, Cambridge, MA, (2011).

Google Scholar

[17] Li, Y., Dong, M., and Hua, J. IEEE Transaction on Pattern Analysis and Machine Intelligence, 31(5): 953-960, (2009).

Google Scholar

[18] Liu, J. S., Zhang, J. L., Palumbo, M. J. Bayesian Statistics, 7: 249-275, (2012).

Google Scholar