Simulations of High Velocity Impacts of Ice on Carbon/Epoxy Composite Laminates

Article Preview

Abstract:

In this work simulations of high velocity impacts of ice spheres on carbon/epoxy laminates are accomplished. The Drucker-Prager model has been chosen to describe the mechanical behavior of the ice under high velocity impact conditions. Results have been validated by means of experimental tests performed in a wide range of impact velocities. The delaminated area was chosen as comparison variable, and reflects that the model predicts adequately the impact process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

505-510

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] J. López-Puente, R. Zaera, and C. Navarro: The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Composites Part B: Engineering, 33 (2002), pp.559-566.

DOI: 10.1016/s1359-8368(02)00065-3

Google Scholar

[2] J. López-Puente, R. Zaera, and C. Navarro: High energy impact on woven laminates. Journal De Physique. IV, 110 (2003), pp.639-644.

DOI: 10.1051/jp4:20020765

Google Scholar

[3] J. López-Puente, R. Zaera, and C. Navarro: An analytical model for high velocity impacts on thin CFRPs woven laminated plates. International Journal of Solids and Structures, 44 (2007), pp.2837-2851.

DOI: 10.1016/j.ijsolstr.2006.08.022

Google Scholar

[4] J. López-Puente, R. Zaera, and C. Navarro: Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Composites Part A: Applied Science and Manufacturing, 39 (2008), pp.374-387.

DOI: 10.1016/j.compositesa.2007.10.004

Google Scholar

[5] D. Fernández-Fdz, J. López-Puente and R. Zaera: Prediction of the behaviour of CFRPs against high-velocity impact of solids employing an artificial neural network methodology. Composites Part A: Applied Science and Manufacturing, 39 (2008).

DOI: 10.1016/j.compositesa.2008.03.002

Google Scholar

[6] D. Varas, J. López-Puente and R. Zaera: Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact. International Journal of Impact Engineering, 36 (2009), pp.81-91.

DOI: 10.1016/j.ijimpeng.2008.04.006

Google Scholar

[7] D. Varas, R. Zaera and J. López-Puente: Numerical modelling of the hydrodynamic ram phenomenon. International Journal of Impact Engineering, 36 (2009), pp.363-374.

DOI: 10.1016/j.ijimpeng.2008.07.020

Google Scholar

[8] J. López-Puente, D. Varas, J.A. Loya and R. Zaera: Analytical modelling of high velocity impacts of cylindrical projectiles on carbon/epoxy laminates. Composites Part A: Applied Science and Manufacturing, 40 (2009), pp.1223-1230.

DOI: 10.1016/j.compositesa.2009.05.008

Google Scholar

[9] D. Varas, R. Zaera and J. López-Puente: Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact. Composite Structures, 93 (2011), pp.2598-2609.

DOI: 10.1016/j.compstruct.2011.04.025

Google Scholar

[10] D. Varas, R. Zaera and J. López-Puente: Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram. Aerospace Science and Technology, 16 (2012), pp.19-28.

DOI: 10.1016/j.ast.2011.02.003

Google Scholar

[11] D. Varas, J. López-Puente and R. Zaera: Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks. AIAA Journal, 50 (2012), pp.1621-1630.

DOI: 10.2514/1.j051613

Google Scholar

[12] J. López-Puente and S. Li: Analysis of strain rate sensitivity of carbon/epoxy woven composites. International Journal of Impact Engineering, 48 (2012), pp.54-64.

DOI: 10.1016/j.ijimpeng.2011.05.008

Google Scholar

[13] D. Varas, J. Artero-Guerrero, J. Pernas-Sanchez, and J. Lopez-Puente: Analysis of high velocity impacts of steel cylinders on thin carbon/epoxy woven laminates. Composite Structures, 95 (2013), pp.623-629.

DOI: 10.1016/j.compstruct.2012.08.015

Google Scholar

[14] J. Artero-Guerrero, J. Pernas-Sanchez, D. Varas and J. Lopez-Puente: Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact. Composite Structures, 96 (2013), pp.286-297.

DOI: 10.1016/j.compstruct.2012.09.020

Google Scholar

[15] J. Artero-Guerrero, J. Pernas-Sanchez, J. Lopez-Puente and D. Varas: On the influence of filling level in CFRP aircraft fuel tank subjected to high velocity impacts. Composite Structures, 107 (2014), pp.570-577.

DOI: 10.1016/j.compstruct.2013.08.036

Google Scholar

[16] J. Pernas-Sanchez, J. Artero-Guerrero, J. Zahr Viñuela , D. Varas and J. Lopez-Puente: Numerical analysis of high velocity impacts on unidirectional laminates. Composite Structures, 107 (2014), pp.629-634.

DOI: 10.1016/j.compstruct.2013.08.035

Google Scholar

[17] E. Schulson: Brittle failure of ice. Engineering Fracture Mechanics, 68 (2001), pp.1839-1887.

Google Scholar

[18] D. Cole: The microstructure of ice and its influence on mechanical properties. Engineering Fracture Mechanics, 68 (2001), pp.1797-1822.

DOI: 10.1016/s0013-7944(01)00031-5

Google Scholar

[19] J. J. Petrovic: Mechanical properties of ice and snow. Journal of Materials science, 38 (2003), pp.1-6.

Google Scholar

[20] S. J. Jones: High Strain-Rate Compression Tests on Ice. The Journal of Physical Chemistry B, 101 (1997), pp.6099-6101.

DOI: 10.1021/jp963162j

Google Scholar

[21] H. Kim and J. N. Keune: Compressive strength of ice at impact strain rates. Journal of Materials Science, 42 (2007), pp.2802-2806.

DOI: 10.1007/s10853-006-1376-x

Google Scholar

[22] M. Anghileri, F. Invernizzi and M. Mascheroni: A survey of numerical models for hail impact analysis using explicit finite element codes. International Journal of Impact Engineering, 31 (2005), pp.929-944.

DOI: 10.1016/j.ijimpeng.2004.06.009

Google Scholar

[23] K. Carney, D. Benson, P. Dubois, and R. Lee: A phenomenological high strain rate model with failure for ice. International Journal of Solids and Structures, 43 (2006), pp.7820-7839.

DOI: 10.1016/j.ijsolstr.2006.04.005

Google Scholar

[24] J. Hou, N. Petrinic, and C. Ruiz: A delamination criterion for laminated composites under low-velocity impact. Composites Science and Technology, 61 (2001), p.2069-(2074).

DOI: 10.1016/s0266-3538(01)00128-2

Google Scholar

[25] D. C. Drucker and W. Prager: Soil mechanics and plastic analysis or limit design. Q J Applied Mathematics, X(2) (1952), pp.157-165.

DOI: 10.1090/qam/48291

Google Scholar

[26] J. Pernas-Sánchez, D. Pedroche, D. Varas, J. López-Puente, and R. Zaera: Numerical modeling of ice behavior under high velocity impacts. International Journal of Solids and Structures, 49, (2012), p.1919-(1927).

DOI: 10.1016/j.ijsolstr.2012.03.038

Google Scholar