Perpendicular Magnetic Anisotropy in Fe/MgO Multilayer Film Measured by Magnetic Compton Scattering

Article Preview

Abstract:

We have measured magnetic Compton scattering (MCS) for an Fe/MgO multilayer film at several magnetic field applying perpendicular to film plane. A spin specific magnetic hysteresis (SSMH) loop is obtained by the MCS for the Fe/MgO multilayer film. A knickpoint is observed in the SSMH loop around the magnetic field of 0.5 T. Orbital magnetization is enhanced within the magnetic field from-0.5 T to 0.5 T. A decomposition analysis for magnetic Compton profiles shows the suppressed |m|=0 states and enhanced |m|=1 and 2 states within the magnetic field from-0.5 T to 0.5 T. Here m denotes magnetic quantum number. The knickpoint corresponds to a perpendicular magnetic anisotropy, which comes from the enhanced |m|=1 and 2 state and orbital magnetization in the Fe/MgO multilayer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-275

Citation:

Online since:

September 2013

Export:

Price:

* - Corresponding Author

[1] R. Shimabukuro, K. Nakamura, T. Akiyama and T. Ito, Physica E42, p.1014 (2010).

Google Scholar

[2] T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando and Y. Suzuki, Nature Nanotech. 4, p.158 (2009).

DOI: 10.1038/nnano.2008.406

Google Scholar

[3] M. Ota, H. Sakurai, F. Itoh, M. Itou and Y. Sakurai, J. Phys. Chem. Solids. 65, 2065 (2004).

Google Scholar

[4] H. Sakurai, M. Ota, M. Itou, Y. Sakura and A. Koizumi, Appl. Phys. Lett. 88, 062507 (2006).

Google Scholar

[5] M. Ota, M. Itou, Y. Sakurai, A. Koizumi and H. Sakurai, Appl. Phys. Lett. 96, 152505 (2010).

DOI: 10.1063/1.3374881

Google Scholar

[6] K. Suzuki, N. Go, S. Emoto, R. Yamaki, M. Itou, Y. Sakurai and H. Sakurai, Key Eng. Mater. 497, p.8 (2012).

Google Scholar

[7] N. Go, K. Suzuki, S. Emoto, M. Itou, Y. Sakurai and H. Sakurai, Key Eng. Mater. 534, 7 (2013).

Google Scholar

[8] A. Agui, H. Sakurai, T. Tamura, T. Kurachi, M. Tanaka, H. Adachi, and H. Kawata, J. Synchrotron Rad. 17, p.321 (2010).

DOI: 10.1107/s090904951000292x

Google Scholar

[9] A. Agui, S. Matsumoto, H. Sakurai, N. Tsuji, S. Homma, Y. Sakurai, and M. Itou, Appl. Phys. Express 4, p.083002 (2011).

DOI: 10.1143/apex.4.083002

Google Scholar

[10] M. J. Cooper, E. Zukowski, S. P. Collins, D. N. Timms, F. Itoh, and H. Sakurai, J. Phys. Condens. Matter 4, p. L339 (1992).

Google Scholar

[11] P. Carra, M. Fabrizio, G. Santoro, and B. T. Thole, Phys. Rev. B 53, p. R5994 (1996).

Google Scholar

[12] N. Sakai, J. Appl. Crystallogr. 29, p.81 (1996).

Google Scholar

[13] M. Itou, A. Koizumi and Y. sakurai, Appl. Phys. Lett. 102, p.082403 (2013).

Google Scholar

[14] Y. Kakutani, Y. Kubo, A. Koizumi, N. Sakai, B. L. Ahuja, and B. K. Sharma, J. Phys. Soc. Jpn. 72, 599 (2003).

Google Scholar

[15] K. Miyokawa, S. Saitoh, T. Katayama, T. Saitoh, T. Kamino, K. Hanashima, Y. Suzuki, K. Mamiya, T. Koide and S. Yuasa, Jpn. J. Appl. Phys. 44, L9 (2005).

DOI: 10.1143/jjap.44.l9

Google Scholar

[16] Y. Kubo and S. Asano, Phys. Rev. B 42, 4431 (1990).

Google Scholar

[17] Y. Sakurai, Y. Tanaka, T. Ohata, Y. Watanabe, S. Nanao, Y. Ushigami, T. Iwazumi, H. Kawata and N. Shiotani, J. Phys. Condens. Matter, 6, p.9469 (1994).

DOI: 10.1088/0953-8984/6/44/025

Google Scholar

[18] H. Kawata, H. Sakurai, N. Shiotani and Y. Watanabe, J. Synchrotron Rad. 13, p.221 (2006).

Google Scholar

[19] P. Bruno, Phys. Rev. B39, p.865 (1989).

Google Scholar

[20] D. Weller, Y. Wu, J. Stӧhr, M. G. Samant, B. D. Hermsmeier and C. Chappert, Phys. Rev. B49, p.12888 (1994).

Google Scholar