Thrust Optimization and Thermal Analysis of a Water-Cooled Double-Sided Permanent Magnet Linear Synchronous Motor

Article Preview

Abstract:

A water-cooled, double-sided permanent magnet linear synchronous motor (PMLSM) is studied by electromagnetic and thermal finite-element (FE) analysis method. Based on electromagnetic analysis, the better structure of this double-sided PMLSM can be obtained after thrust optimization by adjusting motor structure parameters. In order to minimize the thrust ripple, it is further optimized by shifting permanent magnets or armature iron cores of two sides for a small distance. With thermal analysis, the temperature distribution and transient temperature variation of this optimal PMLSM are investigated under the continuous operation and the short-time operation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-246

Citation:

Online since:

September 2013

Export:

Price:

[1] Z.Q. Zhu, D. Howe, Influence of design parameters on cogging torque in permanent magnet machines, IEEE Trans. Magn., vol. 15, no. 4, pp.407-412, Dec, (2000).

DOI: 10.1109/60.900501

Google Scholar

[2] D. Ishak, Z.Q. Zhu, D. Howe, Permanent magnet brushless machines with unequal tooth widths and similar slot and pole numbers, IEEE Trans. Ind. App., vol. 41, no. 2, pp.584-590, Mar. (2005).

DOI: 10.1109/tia.2005.844380

Google Scholar

[3] J.T. Chen, Z.Q. Zhu, D. Howe, Optimization of multi-tooth flux-switching PM brushless AC machines, IEEE Proc. Electrical Machines, pp.1-6. (2008).

DOI: 10.1109/icelmach.2008.4799940

Google Scholar

[4] W. Min, J.T. Chen, Z.Q. Zhu, Y. Zhu, M. Zhang, and G.H. Duan, Optimization and comparison of novel E-Core and C-Core linear switched flux PM machines, IEEE Trans. Magn., vol. 47, no. 8, pp.2134-2141, Aug. (2011).

DOI: 10.1109/tmag.2011.2125977

Google Scholar

[5] Q.F. Lu, C.Y. Cheng, X.M. Zhang, L.R. Huang, Z.L. Yang, Y.Y. Ye et al., Comparative investigation of single-sided and double-sided permanent magnet linear motor, IEEE conference on ICEMS, pp.1-5, (2012).

Google Scholar

[6] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, and C. Mejuto, Evolution and modern approaches for thermal analysis of electrical machines, IEEE Trans. Ind. Electron., vol. 56, no. 3, p.871–882, Mar. (2009).

DOI: 10.1109/tie.2008.2011622

Google Scholar

[7] C. Jang, J.Y. Kim, Y.J. Kim and J.O. Kim, Heat transfer analysis and simplified thermal resistance modeling of linear motor driven stages for SMT applications, IEEE Trans. Comp. Packag. Technol., vol. 26, no. 3, p.532–540, Sep. (2003).

DOI: 10.1109/tcapt.2003.817643

Google Scholar

[8] B.Q. Kou, X.Z. Huang, H.X. Wu, and L.Y. Li, Thrust and thermal characteristics of electromagnetic launcher based on permanent magnet linear synchronous motors, IEEE Trans. Magn., vol. 45, no. 1, p.358–362, Jan. (2009).

DOI: 10.1109/tmag.2008.2008883

Google Scholar

[9] X.M. Zhang, Z.P. Ren, F.M. Mei, Heat Transfer Theory, 5th ed., Beijing, CN: China Building Industry Press, (2007).

Google Scholar