Increased Current Density of a Redox Flow Battery with a Carbon Paper Partially Modified by Porous Carbon Nanofibers

Article Preview

Abstract:

One of the technical issues of vanadium redox flow batteries with a carbon paper electrode and interdigitated flow channel is the relatively low current density due to insufficient active material transport downstream in the electrode and low reaction interface area. In this study, we propose a new composite electrode structure, i.e., a porous carbon nanofiber layer that is partially added on the carbon paper. The current density of the composite electrode was higher than that of the unloaded carbon paper electrode due to the lower internal resistances of the battery. In addition, the discharge capacity and voltage efficiency during the charge-discharge operation were improved by the composite structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-37

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] E. Sum, M. Skyllas-Kazacos, A study of the V (II)/V(III) redox couple for redox flow cell applications, J. Power Sources, 15 (1985) 179–190.

DOI: 10.1016/0378-7753(85)80071-9

Google Scholar

[2] E. Sum, M. Rychcik M. Skyllas-Kazacos, Investigation of the V(V)/V(IV) system for use in the positive half cell of a redox battery, J. Power Sources, 16 (1985) 85–95.

DOI: 10.1016/0378-7753(85)80082-3

Google Scholar

[3] A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta. 101 (2013)27-40.

DOI: 10.1016/j.electacta.2012.09.067

Google Scholar

[4] D.S. Aaron, Q. Liu, Z. Tang, G.M. Grim, A. B. Papandrew, A. Turhan, T. A. Zawodzinski, M.M. Mench, Dramatic performance gains in vanadium redox flow batteries through modified cell architecture, J. Power Sources. 206 (2012) 450–453.

DOI: 10.1016/j.jpowsour.2011.12.026

Google Scholar

[5] Q.H. Liu, G.M. Grim, a. B. Papandrew, a. Turhan, T. a. Zawodzinski, M.M. Mench, High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection, J. Electrochem. Soc. 159 (2012) A1246–A1252.

DOI: 10.1149/2.051208jes

Google Scholar

[6] M.P. Manahan, Q.H. Liu, M.L. Gross, M.M. Mench, Carbon nanoporous layer for reaction location management and performance enhancement in all-vanadium redox flow batteries, J. Power Sources. 222 (2013) 498–502.

DOI: 10.1016/j.jpowsour.2012.08.097

Google Scholar

[7] J. Maruyama, T. Hasegawa, S. Iwasaki, T. Fukuhara, M. Nogami, Mechanism of Dioxovanadium Ion Reduction on Oxygen-Enriched Carbon Surface, J. Electrochem. Soc. 160 (2013) A1293–A1298.

DOI: 10.1149/2.108308jes

Google Scholar

[8] D. Aaron, C.-N. Sun, M. Bright, A.B. Papandrew, M.M. Mench, T. a. Zawodzinski, In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries, ECS Electrochem. Lett. 2 (2013) A29–A31.

DOI: 10.1149/2.001303eel

Google Scholar

[9] T.-M. Tseng, R.-H. Huang, C.-Y. Huang, C.-C. Liu, K.-L. Hsueh, F.-S. Shieu, Carbon Felt Coated with Titanium Dioxide/Carbon Black Composite as Negative Electrode for Vanadium Redox Flow Battery, J. Electrochem. Soc. 161 (2014) A1132–A1138.

DOI: 10.1149/2.102406jes

Google Scholar

[10] C.R. Dennison, E. Agar, B. Akuzum, E.C. Kumbur, Enhancing Mass Transport in Redox Flow Batteries by Tailoring Flow Field and Electrode Design, J. Electrochem. Soc. 163 (2015) A5163–A5169.

DOI: 10.1149/2.0231601jes

Google Scholar

[11] D. Reed, E. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, B. Koeppel, V. Sprenkle, Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW class all vanadium mixed acid redox flow battery, J. Power Sources. 285 (2015) 425–430.

DOI: 10.1016/j.jpowsour.2015.03.099

Google Scholar

[12] J. Houser, J. Clement, A. Pezeshki, M.M. Mench, Influence of architecture and material properties on vanadium redox flow battery performance, J. Power Sources. 302 (2016) 369–377.

DOI: 10.1016/j.jpowsour.2015.09.095

Google Scholar

[13] P.A. Boettcher, E. Agar, C.R. Dennison, E.C. Kumbur, Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling, J. Electrochem. Soc. 163 (2016) A5244–A5252.

DOI: 10.1149/2.0311601jes

Google Scholar

[14] X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, A high-performance dual-scale porous electrode for vanadium redox flow batteries, J. Power Sources. 325 (2016) 329–336.

DOI: 10.1016/j.jpowsour.2016.06.048

Google Scholar

[15] S. Liu, M. Kok, Y. Kim, J.L. Barton, F.R. Brushett, J. Gostick, Evaluation of Electrospun Fibrous Mats Targeted for Use as Flow Battery Electrodes, J. Electrochem. Soc. 164 (2017) A2038–A2048.

DOI: 10.1149/2.1301709jes

Google Scholar

[16] D. Aaron, S. Yeom, K.D. Kihm, Y. Ashraf Gandomi, T. Ertugrul, M.M. Mench, Kinetic enhancement via passive deposition of carbon-based nanomaterials in vanadium redox flow batteries, J. Power Sources. 366 (2017) 241–248.

DOI: 10.1016/j.jpowsour.2017.08.108

Google Scholar

[17] G. Wei, J. Liu, H. Zhao, C. Yan, Electrospun carbon nanofibres as electrode materials toward VO2+/VO2+ redox couple for vanadium flow battery, J. Power Sources. 241 (2013) 709–717.

DOI: 10.1016/j.jpowsour.2013.05.008

Google Scholar

[18] M. Zhang, M. Moore, J.S. Watson, T.A. Zawodzinski, R.M. Counce, Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery, J. Electrochem. Soc. 159 (2012) A1183–A1188.

DOI: 10.1149/2.041208jes

Google Scholar

[19] H. Ishitobi, Y. Ino, N. Nakagawa, Anode catalyst with enhanced ethanol electrooxidation activity by effective interaction between Pt-Sn-SiO2 for a direct ethanol fuel cell, Int. J. Hydrogen Energy. 42 (2017) 26897–26904.

DOI: 10.1016/j.ijhydene.2017.09.017

Google Scholar

[20] S. Tsushima, S. Sasaki, S. Hirai, Influence of cell geometry and operating parameters on performance of a redox flow battery with serpentine and interdigitated flow fields, in: Proceedings of ECS Meeting, San Francisco, October, 2013, No.1664.

DOI: 10.1149/ma2013-02/16/1664

Google Scholar

[21] K.W. Knehr, E. Agar, C.R. Dennison, A.R. Kalidindi, E.C. Kumbur, A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane, J. Electrochem. Soc. 159 (2012) A1446–A1459.

DOI: 10.1149/2.017209jes

Google Scholar