Synthesis, Characterization and Bioactivity of Chitosan Hydroxyapatite Composite Doped with Strontium

Article Preview

Abstract:

Chitosan-hydroxyapatite composite doped with strontium was synthesised via in situ co-precipitation method. Physicochemical properties of the composite obtained were analysed using X-ray diffraction (XRD), infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and Thermogravimetry with differential thermal analysis (DT-TGA). The synthesized composite was subjected to bioactivity studies in simulated body fluid (SBF). The calcium release from the sample in SBF was measured using atomic absorption spectroscopy (AAS). The physicochemical properties and bioactivity of the novel composite was compared with that of hydroxyapatite, strontium doped hydroxyapatite and chitosan hydroxyapatite. The in vitro bioactivity studies of the novel composite showed that it has a higher release of Ca2+ in the SBF compared to the other samples. The novel material was also found to induce more Ca2+ deposition after 28 days of immersion in the SBF. Hence, the novel composite material has the potential to be used as biomaterials for clinical application.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

217-226

Citation:

Online since:

May 2021

Export:

Price:

* - Corresponding Author

[1] K. Lin, P. Liu, L. Wei, Z. Zou, W. Zhang, Y. Qian, J. Chang, Strontium substituted hydroxyapatite porous microspheres: Surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release, Chemical Engineering Journal 222 (2013) 49-59.

DOI: 10.1016/j.cej.2013.02.037

Google Scholar

[2] D. He, X. Xiao, F. F. Liu, R.F. Liu, Hydroxyapatite nanospindles by biomimetic synthesis with chitosan as template, Materials Science and Technology 23(10) (2007) 1228-1232.

DOI: 10.1179/174328407x213305

Google Scholar

[3] V. Aina, L. Bergandi, G. Lusvardi, G. Malavasi, F.E. Imrie, I.G. Gibson, G. Ghigo, Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells, Material Scienec and Engineering C 33(3) (2013) 1132-1142.

DOI: 10.1016/j.msec.2012.12.005

Google Scholar

[4] S. Kulanthaivel, U. Mishra, T. Agarwal, S. Giri, K. Pal, K. Pramanik, I. Banerjee, Improving the osteogenic and angiogenic properties of synthetic, Ceramics International 41 (2015) 11323-11333.

DOI: 10.1016/j.ceramint.2015.05.090

Google Scholar

[5] R.A.A. Muzzarelli, Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydrate Polymers 83(4) (2011) 1433-1445.

DOI: 10.1016/j.carbpol.2010.10.044

Google Scholar

[6] M.R. Nikpour, S.M. Rabiee, M. Jahanshahi, Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications, Composites Part B: Engineering 43(4) (2012) 1881-1886.

DOI: 10.1016/j.compositesb.2012.01.056

Google Scholar

[7] M. Rajkumar, K. Kavitha, M. Prabhu, N. Meenakshisundaram, V. Rajendran, Nanohydroxyapatite-chitosan-gelatin polyelectrolyte complex with enhanced mechanical and bioactivity, Materials Science Engineering C Materials Biology Applied 33(6) (2013) 3237-3244.

DOI: 10.1016/j.msec.2013.04.005

Google Scholar

[8] A. Rogina, M. Ivankovic, H. Ivankovic, Preparation and characterization of nano-hydroxyapatite within chitosan matrix, Materials Science Engineering C Materials Biology Applied 33(8) (2013) 4539-4544.

DOI: 10.1016/j.msec.2013.07.008

Google Scholar

[9] P. Jongwattanapisan, D.H Kim, N. Charoenphandhu, N. Krishnamra, J. Thongbunchoo, I.Tang, H. Rassimidara, M.J Smith, W. Pon-On, In vitro study of the SBF and osteoblast like-cells on hydroxyapatite/chitosan-silica nanocomposite, Materials Science and Engineering C 31 (2012) 290-299.

DOI: 10.1016/j.msec.2010.09.009

Google Scholar

[10] I. Cacciotti, A. Bianco, M. Lombardi, L. Montanaro, Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour, Journal of the European Ceramic Society 29(14) (2009) 2969-2978.

DOI: 10.1016/j.jeurceramsoc.2009.04.038

Google Scholar

[11] A.Z. Alshemary, M. Akram, Y.F. Goh, U. Tariq, F.K. Butt, A. Abdolahi, R. Hussain, Synthesis, characterization, in vitro bioactivity and antimicrobial activity of magnesium and nickel doped silicate hydroxyapatite, Ceramics International 41(9) (2015) 11886-11898.

DOI: 10.1016/j.ceramint.2015.06.003

Google Scholar

[12] M. Rajkumar, K. Kavitha, M. Prabhu, N. Meenakshisundaram, V. Rajendran, Nanohydroxyapatite-chitosan-gelatin polyelectrolyte complex with enhanced mechanical and bioactivity, Materials Science Engineering C Materials Biology Applied 33(6) (2013) 3237-3244.

DOI: 10.1016/j.msec.2013.04.005

Google Scholar

[13] A. Balamurugan, G. Balossier, P. Torres, J. Michel, J.M.F. Ferreira, Sol–gel synthesis and spectrometric structural evaluation of strontium substituted hydroxyapatite, Materials Science and Engineering: C 29(3) (2009) 1006-1009.

DOI: 10.1016/j.msec.2008.09.005

Google Scholar

[14] J. Batton, A.J. Kadaksham, A. Nzihou, P. Singh, N. Aubry, Trapping heavy metals by using calcium hydroxyapatite and dielectrophoresis, Journal of Hazard Materials 139(3) (2007a) 461-466.

DOI: 10.1016/j.jhazmat.2006.02.057

Google Scholar

[15] P. Roy, R.R. Sailaja, Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies, International Journal of Biological Macromolecules 73 (2015) 170-181.

DOI: 10.1016/j.ijbiomac.2014.11.023

Google Scholar

[16] A. Bigi, E. Boanini, C. Capuccini, M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals, Inorganica Chimica Acta 360(3) (2007) 1009-1016.

DOI: 10.1016/j.ica.2006.07.074

Google Scholar

[17] H.H. Jin, C.H. Lee, W.K. Lee, J.K. Lee, H.C. Park, S.Y. Yoon, In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds, Materials Letters 62(10-11) (2008) 1630-1633.

DOI: 10.1016/j.matlet.2007.09.043

Google Scholar

[18] A. Yasukawa, K. Kandori, H. Tanaka, K. Gotoh, Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions, Materials Research Bulletin 47(5) (2012) 1257-1263.

DOI: 10.1016/j.materresbull.2012.01.018

Google Scholar

[19] V. Simon, C. Albon, S. Simon, Silver release from hydroxyapatite self-assembling calcium–phosphate glasses, Journal of Non-Crystalline Solids 354(15-16) (2008) 1751-1755.

DOI: 10.1016/j.jnoncrysol.2007.08.063

Google Scholar

[20] Y. W.Gu, K.A. Khor, D. Pan, P. Cheang, Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid, Biomaterials 25(16) (2004) 3177-3185.

DOI: 10.1016/j.biomaterials.2003.09.101

Google Scholar

[21] H. Li, X. Zhao, S. Cao, K. Li, M. Chen, Z. Xu, L. Zhang, Na-doped hydroxyapatite coating on carbon/carbon composites: Preparation, in vitro bioactivity and biocompatibility, Applied Surface Science 263 (2012) 163-173.

DOI: 10.1016/j.apsusc.2012.09.022

Google Scholar

[22] X. Fan, J. Chen, J.P. Zou, Q. Wan, Z.C. Zhou, J.M. Ruan, Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid, Transactions of Nonferrous Metals Society of China 19(2) (2009).347-352.

DOI: 10.1016/s1003-6326(08)60276-9

Google Scholar