Bioleaching of Non-Ferrous Metals from Arsenic-Bearing Sulfide Concentrate

Article Preview

Abstract:

Tank bioleaching of substandard arsenic-bearing sulfide copper–zinc concentrate, containing 1.70, 6.22, and 7.30% of arsenic, copper, and zinc, was performed. The concentrate contained pyrite, chalcopyrite, tennantite, and sphalerite. Bioleaching was performed at 40°C using a mixed culture of acidophilic microorganisms in two modes. In the first mode, pulp density was 10%, while in the second it comprised 15%. Bioleaching made it possible to extract 17 and 70% of copper and zinc in the first mode, and 15 and 72% of copper and zinc in the second mode. The results obtained that bioleaching can be an effective approach to remove zinc from substandard copper-zinc concentrates. At the same time, copper minerals, including arsenic-bearing mineral tennantite, may be comparatively resistant to bioleaching, so requires the development of novel hydrometallurgical approaches for effective processing.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 299)

Pages:

1064-1068

Citation:

Online since:

January 2020

Export:

Price:

* - Corresponding Author

[1] M. Gericke, J.W. Neale, P.C. van Staden, A Mintek perspective of the past 25 years in minerals bioleaching, J. South. Afr. Inst. Mining Metallurgy 109 (2009) 567-585.

Google Scholar

[2] A. Mahmoud, P. Cezac, A.F.A. Hoadley, F. Contamine, P. D'Hugues, A review of sulfide minerals microbially assisted leaching in stirred tank reactors, International Biodeterioration & Biodegradation 119 (2017) 118-146.

DOI: 10.1016/j.ibiod.2016.09.015

Google Scholar

[3] B.D. Van Aswegen, J. van Niekerk, W. Olivier, The BIOX process for the treatment of refractory gold concentrate, in: D.E. Rawlings, B.D. Johnson (Eds.), Biomining, Springer, Berlin, (2009) 1–35.

DOI: 10.1007/978-3-540-34911-2_1

Google Scholar

[4] J. Neale, J. Seppälä, A. Laukka, P. van Aswegen, S. Barnett, M. Gericke, The MONDO Minerals Nickel Sulfide Bioleach Project: From Test Work to Early Plant Operation, Solid State Phenomena, 262 (2017) 28-32.

DOI: 10.4028/www.scientific.net/ssp.262.28

Google Scholar

[5] Information on: http://www.icsg.org.

Google Scholar

[6] D. Filippou, P. St-Germain, T. Grammatikopoulos, Recovery of metal values from copper-arsenic minerals and other related resources, Mineral Processing and Extractive Metallurgy Review 28 (4) (2007) 247-298.

DOI: 10.1080/08827500601013009

Google Scholar

[7] A.G. Bulaev, T.F. Kondrat'eva, Z.K. Kanaeva, A.T. Kanaev, Biooxidation of a double-refractory gold-bearing sulfide ore concentrate, Microbiology 84 (5) (2015) 636-643.

DOI: 10.1134/s0026261715050033

Google Scholar

[8] T. Maniatis, E.F. Fritsch, J. Sambrook, Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Laboratory, New York, (1982).

DOI: 10.1002/jobm.19840240107

Google Scholar

[9] N.A. Filippova, Phazovy analiz rud i produktov ikh pererabotki, Khimiya, Moscow, (1975).

Google Scholar

[10] T.F. Kondrat'eva, A.G. Bulaev, M.I. Muravyov. Microorganisms in biotechnologies of sulfide ores processing, Nauka, Moscow, (2015).

Google Scholar

[11] O.V. Golyshina, H. Lünsdorf, I.V. Kublanov, N.I. Goldenstein, K.U. Hinrichs, P.N. Golyshin, The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales, Int. J. Syst. Evol. Microbiol. 66(1) (2016) 332-340.

DOI: 10.1099/ijsem.0.000725

Google Scholar