Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines

Article Preview

Abstract:

This article is focused on solving the problem of power supply for the mining and industrial regions of Ukraine. This problem is caused by a significant import dependence on natural gas, the lack of efficient technologies in the integrated development of the energy resources of gas-coal deposits and the deterioration of social and economic, as well as environmental conditions in mining regions. As a promising direction for solving the problem of rational use of methane from coal mines and reducing the hazardous gas emissions into the atmosphere, the implementation of gas hydrate technologies into the technological complex of a coal mine has been proposed. The Clausius-Clapeyron equation has been improved for the conditions of gas hydrates formation, which considers the presence of an excess in non-equilibrium defects and is supplemented, taking into account the thermal effect of phase transformations, with all the time positive thermal effect of the defects relaxation. It has been revealed that one can intentionally control the relaxation energy of defects by the thermodynamic stimulus of phase transformations in the process of hydrate formation. The experimental dependences have been determined of the change in hydrate accumulation on the time of hydrate formation, with the methane hydrates production and taking into account the parameters of pressure and temperature. It has been revealed that the maximum fast time of hydrate formation at T = 1°C and P = 10 MPa is the time which amounts to 2.5 hours. The experimental dependences have been determined of the gas hydrates formation out of a methane-air mixture of degassing holes, on the methane concentration, on pressure and temperature parameters. It has been determined that the greater the methane concentration in the mixture, the greater must be the pressure in the system for the gas hydrates formation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 291)

Pages:

155-172

Citation:

Online since:

May 2019

Export:

Price:

* - Corresponding Author

[1] Tahvonen, O., & Salo, S. (2001). Economic growth and transitions between renewable and nonrenewable energy resources. European Economic Review, 45(8), 1379-1398. https://doi.org/10.1016/s0014-2921(00)00062-3.

DOI: 10.1016/s0014-2921(00)00062-3

Google Scholar

[2] Medunić, G., Mondol, D., Rađenović, A., & Nazir, S. (2018). Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13-21. https://doi.org/10.17794/rgn.2018.3.2.

DOI: 10.17794/rgn.2018.3.2

Google Scholar

[3] Strpić, K., Miličević, M., & Kurevija, T. (2017). Development of tight oil resources in the USA: Exploitation costs and effect of macroeconomic indicators in a volatile oil price environment. Rudarsko Geolosko Naftni Zbornik, 32(3), 23-33. https://doi.org/10.17794/rgn.2017.3.3.

DOI: 10.17794/rgn.2017.3.3

Google Scholar

[4] Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6.

DOI: 10.1201/b19901-6

Google Scholar

[5] Bondarenko, V., Cherniak, V., Cawood, F., & Chervatiuk, V. (2017). Technological safety of sustainable development of coal enterprises. Mining of Mineral Deposits, 11(2), 1-11. https://doi.org/10.15407/mining11.02.001.

DOI: 10.15407/mining11.02.001

Google Scholar

[6] Shustov, O. O., Bielov, O. P., Perkova, T. I., & Adamchuk, A. A. (2018). Substantiation of the ways to use lignite concerning the integrated development of lignite deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 5–13. https://doi.org/10.29202/nvngu/2018-3/6.

DOI: 10.29202/nvngu/2018-3/6

Google Scholar

[7] Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118-121.

DOI: 10.29202/nvngu

Google Scholar

[8] Naduty, V., Malanchuk, Z., Malanchuk, E., & Korniyenko, V. (2015). Modeling of vibro screening at fine classification of metallic basalt. New Developments in Mining Engineering 2015, 441-443. https://doi.org/10.1201/b19901-77.

DOI: 10.1201/b19901-77

Google Scholar

[9] Petlovanyi, M.V., Lozynskyi, V.H., Saik, P.B., & Sai, K.S. (2018). Modern experience of low-coal seams underground mining in Ukraine. International Journal of Mining Science and Technology. Article in press. https://doi.org/10.1016/j.ijmst.2018.05.014.

DOI: 10.1016/j.ijmst.2018.05.014

Google Scholar

[10] Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113-119. https://doi.org/10.1201/b11329-19.

DOI: 10.1201/b11329-19

Google Scholar

[11] Snihur, V., Malashkevych, D., & Vvedenska, T. (2016). Tendencies of coal industry development in Ukraine. Mining of Mineral Deposits, 10(2), 1-8. http://dx.doi.org/10.15407/mining10.02.001.

DOI: 10.15407/mining10.02.001

Google Scholar

[12] Khomenko, О., Sudakov, А., Malanchuk, Z., & Malanchuk, Ye. (2017). Principles of rock pressure energy usage during underground mining of deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 35-43.

DOI: 10.29202/nvngu/2018-2/3

Google Scholar

[13] Kuz'menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 45-48. https://doi.org/10.1201/b16354-10.

DOI: 10.1201/b16354-9

Google Scholar

[14] Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35. https://doi.org/10.29202/nvngu/2018-4/3.

DOI: 10.29202/nvngu/2018-4/3

Google Scholar

[15] Lozynskyi, V., Dychkovskyi, R., Saik, P., Falshtynskyi, V. (2018). Coal seam gasification in faulting zones (heat and mass balance study). Solid State Phenomena, (277), 66-79. https://doi.org/10.4028/www.scientific.net/SSP.277.66.

DOI: 10.4028/www.scientific.net/ssp.277.66

Google Scholar

[16] Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., & Malanchuk, Y. (2018). Analytical research of the stress-deformed state in the rock massif around faulting. International Journal of Engineering Research in Africa, (35), 77-88. https://doi.org/10.4028/www.scientific.net/jera.35.77.

DOI: 10.4028/www.scientific.net/jera.35.77

Google Scholar

[17] Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(3), 1136-1148. https://doi.org/10.1016/j.acme.2018.01.012.

DOI: 10.1016/j.acme.2018.01.012

Google Scholar

[18] Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47), 74-78.

Google Scholar

[19] Sai, K., & Ganushevych, K. (2014). Utilization of mine methane and their transportation in gas hydrates state. Mining of Mineral Deposits, 8(3), 299-307. https://doi.org/10.15407/mining08.03.299.

DOI: 10.15407/mining08.03.299

Google Scholar

[20] Maksymova, E. (2015). Methodological approach to the development of gas hydrate deposits. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 129-132. https://doi.org/10.1201/b19901-24.

DOI: 10.1201/b19901-24

Google Scholar

[21] Kolesnik, V.Ye., Pavlichenko, A.V., & Buchavy, Yu.V. (2016). Determination of dynamic parameters of dust emission from a coal mine fang. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 81-87.

DOI: 10.29202/nvngu

Google Scholar

[22] Sundramoorthy, J.D., Hammonds, P., Lal, B., & Phillips, G. (2016). Gas hydrate gas hydrate equilibrium measurement and observation of gas hydrate dissociation with/without a KHI. Procedia Engineering, (148), 870-877. https://doi.org/10.1016/j.proeng.2016.06.476.

DOI: 10.1016/j.proeng.2016.06.476

Google Scholar

[23] Demirbas, A. (2010). Methane gas hydrate. Green energy and technology. London, United Kingdom: Springer. https://doi.org/10.1007/978-1-84882-872-8.

Google Scholar

[24] Goyal, A., Stagner, J., & Ting, D.S.-K. (2016). Gas hydrate potential and development for methane storage. Methane and Hydrogen for Energy Storage, 137-153. https://doi.org/10.1049/pbpo101e_ch8.

DOI: 10.1049/pbpo101e_ch8

Google Scholar

[25] Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Colletion – Mining of Mineral Deposits, 115-119. https://doi.org/10.1201/b16354-21.

DOI: 10.1201/b16354-20

Google Scholar

[26] Bоndаrenkо, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21-28. https://doi.org/10.29202/nvngu/2018-2/4.

DOI: 10.29202/nvngu/2018-2/4

Google Scholar

[27] Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35-40. https://doi.org/10.1201/b13157-7.

DOI: 10.1201/b13157-8

Google Scholar

[28] Smol, M., Kulczycka, J., & Avdiushchenko, A. (2017). Circular economy indicators in relation to eco-innovation in European regions. Clean Technologies and Environmental Policy, 19(3), 669-678. https://doi.org/10.1007/s10098-016-1323-8.

DOI: 10.1007/s10098-016-1323-8

Google Scholar

[29] Carroll, J. (2014). Natural gas hydrates: A guide for engineers. Oxford, United Kingdom: Elsevier.

Google Scholar

[30] Uddin, M., Wright, F., Dallimore, S., & Coombe, D. (2014). Gas hydrate dissociations in Mallik hydrate bearing zones A, B, and C by depressurization: Effect of salinity and hydration number in hydrate dissociation. Journal of Natural Gas Science and Engineering, (21), 40-63. https://doi.org/10.1016/j.jngse.2014.07.027.

DOI: 10.1016/j.jngse.2014.07.027

Google Scholar

[31] JOGMEC/NRCan/Aurora. (2018). Mallik gas hydrate production research program. [online]. Available at: http://mallik.nwtresearch.com/index-2.html.

DOI: 10.4095/292079

Google Scholar

[32] MH21 Research Consortium. (2018). Research consortium for methane hydrate resources in Japan. [online]. Available at: http://www.mh21japan.gr.jp/english.

Google Scholar

[33] Saik, P., Petlovanyi, M., Lozynskyi, V., Sai, K., & Merzlikin, A. (2018). Innovative approach to the integrated use of energy resources of underground coal gasification. Solid State Phenomena, (277), 221-231. https://doi.org/10.4028/www.scientific.net/SSP.277.221.

DOI: 10.4028/www.scientific.net/ssp.277.221

Google Scholar

[34] Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5/6(89), 48-55. https://doi.org/10.15587/1729-4061.2017.112313.

DOI: 10.15587/1729-4061.2017.112313

Google Scholar

[35] Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123-127. https://doi.org/10.1201/b19901-23.

DOI: 10.1201/b19901-23

Google Scholar

[36] Melnikov, V., & Gennadinik, V. (2018). Cryodiversity: The world of cold on the earth and in the solar system. Philosophy and Cosmology, (20), 43-54. https://doi.org/10.29202/phil-cosm/20/4.

DOI: 10.29202/phil-cosm/20/4

Google Scholar

[37] Pedchenko, M., & Pedchenko, L. (2017). Analysis of gas hydrate deposits development by applying elements of hydraulic borehole mining technology. Mining of Mineral Deposits, 11(2), 52-58. https://doi.org/10.15407/mining11.02.052.

DOI: 10.15407/mining11.02.052

Google Scholar

[38] Dyadin, Yu.A., & Gushchin, A.L. (1998). Gazovye gidraty. Sorosovskiy Obrazovatel'nyy Zhurnal, (3), 55-64.

Google Scholar

[39] Prigozhin, I. (2001). Vvedenie v termodinamiku neobratimykh protsessov. Izhevsk: NITs Regulyarnaya i khaoticheskaya dinamika.

Google Scholar

[40] Prigozhin, I., & Nikolis, Dzh. (1973). Biologicheskiy poryadok, struktura i neustoychivosti. Uspekhi Fizicheskikh Nauk, 109(3), 517-527.

Google Scholar

[41] Khaaze, R. (1967). Termodinamika neobratimykh protsessov. Moskva: Mir.

Google Scholar

[42] Byurger, M.D. (1971). Fazovye perekhody. Kristallografiya, 16(6), 10-84.

Google Scholar

[43] Svetkina, E.Yu., & Franchuk, V.P. (2003). Temperaturnye effekty pri vibronagruzhenii. Naukovyi Vіsnyk Natsionalnoho Hirnychoho Universytetu, (1), 70-72.

Google Scholar

[44] Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection ‒ Mining of Mineral Deposits, 203-205. https://doi.org/10.1201/b16354-37.

DOI: 10.1201/b16354-36

Google Scholar

[45] Walsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., & Wu, D.T. (2009). Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science, 326(5956), 1095-1098. https://doi.org/10.1126/science.1174010.

DOI: 10.1126/science.1174010

Google Scholar

[46] Sloan, E., & Koh, C. (2007). Clathrate hydrates of natural gases. New York, United States: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781420008494.

Google Scholar

[47] Dontsov, V.E., Nakoryakov, V.E., & Chernoy, L.S. (2006). Sposob polucheniya gazovykh gidratov. Patent RU 2270053.

Google Scholar

[48] Dontsov, V.E., & Nakoryakov, V.E. (2010). Udarno-volnovoy sposob polucheniya gazogidratov. Patent RU 2405740.

Google Scholar

[49] Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104-115. https://doi.org/10.15407/mining12.02.104.

DOI: 10.15407/mining12.02.104

Google Scholar

[50] Falshtynskyi, V.S., Saik, P.B., Lozynskyi, V.H., Dychkovskyi, R.O., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68-75. https://doi.org/10.15407/mining12.02.068.

DOI: 10.15407/mining12.02.068

Google Scholar