High Performance Thermal Grease with Aluminum Nitride Filler and an Installation for Thermal Conductivity Investigation

Article Preview

Abstract:

A huge increase in performance of devices within the sizes and weight decrease result in high performance thermal interface materials (TIM) are indispensable to application. Thermal grease is one of the most commonly used TIM types. Zinc-oxide based thermal grease (KPT-8) has a low thermal conductivity that leads to overheating. New silicone oil – aluminum nitride high performance thermal grease has been studied. Also the installation for thermal conductivity investigation has been designed and produced. Thermal conductivity value of aluminum nitride-silicone oil thermal grease with 50 % volume fraction was 1,130±0,056 W/(m K), that is 40 % higher than KPT-8 thermal conductivity. Thermal conductivity value was calculated by a number of theoretical models, and the results were compared to the experimental data. The best results have been obtained by modeling within Brugemman and Cheng-Vachon theories.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 284)

Pages:

48-53

Citation:

Online since:

October 2018

Export:

Price:

* - Corresponding Author

[1] D.D.L. Chung, Materials for thermal conduction, Applied Thermal Engineering. 21 (2001) 1593-1605.

DOI: 10.1016/s1359-4311(01)00042-4

Google Scholar

[2] A.A. Elagin, R.A. Shishkin, A.R. Beketov, M.V. Baranov, O.V. Stoyanov, Thermal conductive materials and thermal pastes based on them: review, Vestnik Kazan Technological University. 4 (2013) 132-137.

Google Scholar

[3] A. J. McNamara, Y. Joshi, Z. M. Zhang, Characterization of nanostructured thermal interface materials - A review, International Journal of Thermal Sciences 62 (2012) 2 – 11.

DOI: 10.1016/j.ijthermalsci.2011.10.014

Google Scholar

[4] R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proceedings of the IEEE 8.

Google Scholar

[5] J.P. Gwinn, R.L. Webb, Performance and testing of thermal interface materials, Microelectronics Journal 34 (2003) 215-222.

DOI: 10.1016/s0026-2692(02)00191-x

Google Scholar

[94] (2006) 1571-1586.

Google Scholar

[6] J. Due, A. J. Robinson, Reliability of thermal interface materials: A review, Applied Thermal Engineering 50 (2013) 455-463.

DOI: 10.1016/j.applthermaleng.2012.06.013

Google Scholar

[7] K.C. Otiaba, N.N. Ekere, R.S. Bhatti, S. Mallik, M.O. Alam, E.H. Amalu, Thermal interface materials for automotive electronic control unit: Trends, technology and R&D challenges, Microelectronics Reliability 51 (2011) 2031-(2043).

DOI: 10.1016/j.microrel.2011.05.001

Google Scholar

[8] G. W. Lee, M. Park, J. Kim, J. I. Lee, H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites: Part A 37 (2006) 727-734.

DOI: 10.1016/j.compositesa.2005.07.006

Google Scholar

[10] D. Suryanarayana, Oxidation Kinetics of Aluminum Nitride, J. Am. Ceram. Soc., 73 (4) (1990) 1108-1110.

Google Scholar

[9] A. D. Katnani, K. I. Papathomas, Kinetics and initial stages of oxidation of aluminum nitride: Thermogravimetric analysis and X-ray photoelectron spectroscopy study, Journal of Vacuum Science & Technology A 5.

DOI: 10.1116/1.574765

Google Scholar

[11] W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, L. Chen, Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina, International Journal of Thermal Sciences 91 (2015) 76-82.

DOI: 10.1016/j.ijthermalsci.2015.01.006

Google Scholar

[4] (1987) 1335-1340.

Google Scholar

[12] C.W. Nan, Z. Shi, Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites, Chemical Physics Letters 375 (2003) 666-669.

DOI: 10.1016/s0009-2614(03)00956-4

Google Scholar

[13] J. P. Angle, Z. Wang, C. Dames, M. L. Mecartney, Comparison of Two-Phase Thermal Conductivity Models with Experiments on Dilute Ceramic Composites, J. Am. Ceram. Soc., 96 (9) (2013) 2935-2942.

DOI: 10.1111/jace.12488

Google Scholar

[14] B.X. Wang , L.P. Zhou, X.F. Peng, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, International Journal of Heat and Mass Transfer 46 (2003) 2665-2672.

DOI: 10.1016/s0017-9310(03)00016-4

Google Scholar

[15] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, Journal of the European Ceramic Society 24 (2004) 2657-2667.

DOI: 10.1016/j.jeurceramsoc.2003.09.012

Google Scholar

[16] R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems, Industrial and Engineering Chemistry Fundamentals, 1 (3) (1962) 187-191.

DOI: 10.1021/i160003a005

Google Scholar

[17] Q.Z. Xue, Model for effective thermal conductivity of nanofluids, Physics Letters A 307 (2003) 313-317.

DOI: 10.1016/s0375-9601(02)01728-0

Google Scholar

[18] S. Okamoto, H. Ishida, A New Theoretical Equation for Thermal Conductivity of Two-Phase Systems, Journal of Applied Polymer Science, 72, (1999) 1689-1697.

DOI: 10.1002/(sici)1097-4628(19990624)72:13<1689::aid-app5>3.0.co;2-d

Google Scholar

[19] X. Y. Li, X. L. Zhao, X. Y. Guo, Z. M. Shao and M. X. Ai, New theoretical equation for effective thermal conductivity of two-phase composite materials, Materials Science and Technology 5 (28) (2012) 620-626.

DOI: 10.1179/1743284711y.0000000112

Google Scholar

[20] A. V. Markov, Thermal Conductivity of Polymers Filled with Dispersed Particles: A Model, Polymer Science, Ser. A, 4 (50) (2008) 471-479.

DOI: 10.1134/s0965545x08040160

Google Scholar