Finite Element Analysis of Tool Stresses, Temperature and Prediction of Cutting Forces in Turning Process

Article Preview

Abstract:

The paper presents the simulation model of turning the process of C45 non-alloy steel with a tool made of carbide insert. A 3D final element model used a lagrangian incremental type and re-meshing chip separation criterion was experimentally verified by measure cutting forces using piezoelectric dynamometer. In addition, stresses and temperature in the tooltip were predicted and examine. This work could investigate failure the tooltip, which would be great interest to predict wear and damage of cutting tool.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

354-361

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] W. Zebala, G. Struzikiewicz, and K. Rumian, Application of Taguchi Method to Optimization of Cutting Force and Temperature during Turning of Difficult to Cut Materials, in Precision Machining VIII, 2016, vol. 686, p.114–118.

DOI: 10.4028/www.scientific.net/kem.686.114

Google Scholar

[2] G. Szabó and J. Kundrák, Investigation of Residual Stresses in Case of Hard Turning of Case Hardened 16MnCr5 Steel, Key Eng. Mater., vol. 581, p.501–504, Mar. (2013).

DOI: 10.4028/www.scientific.net/kem.581.501

Google Scholar

[3] J. Kundrák, G. Szabó, and A. P. Markopoulos, Numerical investigation of the influence of tool rake angle on residual stresses in precision hard turning, Key Eng. Mater., vol. 686. pp.68-73, (2016).

DOI: 10.4028/www.scientific.net/kem.686.68

Google Scholar

[4] M. Takács, Validation of 3D Finite Element Simulation of Chip Removal Process Performed by Unique Insert Geometry, Key Eng. Mater., vol. 581, p.505–510, Mar. (2013).

DOI: 10.4028/www.scientific.net/kem.581.505

Google Scholar

[5] T. Özel and T. Altan, Process simulation using finite element method — prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling, Int. J. Mach. Tools Manuf., vol. 40, no. 5, p.713–738, (2000).

DOI: 10.1016/s0890-6955(99)00080-2

Google Scholar

[6] M. Martinkovič and M. Necpal, Analysis of Strain in Cutting Zone with FEM and Stereological Metallographic Evaluation, Mater. Sci. Forum, vol. 862, p.246–253, (2016).

DOI: 10.4028/www.scientific.net/msf.862.246

Google Scholar

[7] G. M. Pittalà and M. Monno, 3D finite element modeling of face milling of continuous chip material, Int. J. Adv. Manuf. Technol., vol. 47, no. 5, p.543–555, (2010).

DOI: 10.1007/s00170-009-2235-0

Google Scholar

[8] T. Thepsonthi and T. Özel, 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear, J. Mater. Process. Technol., vol. 221, p.128–145, (2015).

DOI: 10.1016/j.jmatprotec.2015.02.019

Google Scholar

[9] M. Abouridouane, F. Klocke, and D. Lung, Microstructure-based 3D Finite Element Model for Micro Drilling Carbon Steels, Procedia CIRP, vol. 8, p.94–99, (2013).

DOI: 10.1016/j.procir.2013.06.071

Google Scholar

[10] B. Sonderegger, H. Zamani, C. Sommitsch, and J. P. Hermani, 3D Simulation of Laser Assisted Side Milling of Ti6Al4V Alloy Using Modified Johnson-Cook Material Model, in The Current State-of-the-Art on Material Forming, 2013, vol. 554, p.2054–(2061).

DOI: 10.4028/www.scientific.net/kem.554-557.2054

Google Scholar

[11] M. K. Raju, B Padma and Swamy, Finite element simulation of a friction drilling process using deform-3D, Int. J. Eng. Res. Appl., vol. 2012, pp.716-721.

Google Scholar

[12] L. Morovič, F. Hornák, J. Peterka, P. Pokorný, and M. Kováč, Optical 3D Scanning of Cutting Tools, in Information Technology for Manufacturing Systems IV, 2013, vol. 421, p.663–667.

DOI: 10.4028/www.scientific.net/amm.421.663

Google Scholar

[13] L. Morovič, I. Buranský, and J. Vagovský, Shape Investigation of Worn Cutting Inserts with Utilization of Active Triangulation, in Precision Machining VII, 2014, vol. 581, p.22–25.

DOI: 10.4028/www.scientific.net/kem.581.22

Google Scholar

[14] M. Beňo, Research on technology possibilities of CNC turning with counter spindle, Slovak University of Technology in Bratislava, (2012).

Google Scholar