Oxygen Ionic Transport in Brownmillerite-Type Ca2Fe2O5-δ and Calcium Ferrite-Based Composite Membranes

Article Preview

Abstract:

Oxygen ionic transport in mixed-conducting Ca2Fe2O5-δ brownmillerite was analyzed in light of potential applications in the composite materials for oxygen separation membranes and solid oxide fuel cell cathodes. The lattice defect formation and oxygen diffusion mechanisms were assessed by the computer simulations employing molecular dynamics and static lattice modeling. The most energetically favorable oxygen-vacancy location is in the octahedral layers of the brownmillerite structure, which provide a maximum contribution to the ionic migration in comparison with the structural blocks comprising iron-oxygen tetrahedra. The activation energies for the vacancy and interstitial diffusion in the tetrahedral layers, and also between the octahedral and tetrahedral sheets, are several times higher. The calculated values were found comparable to the experimental activation energy for ionic conduction in Ca2Fe2O5-δ, 147 kJ/mol, determined by the steady-state oxygen permeation measurements. The dense membranes of model composite Ca2Fe2O5-δ - Ce0.9Gd0.1O2-δ with equal weight fractions of the components (CGCF5) were sintered and characterized. No critical interdiffusion of the composite constituents, leading to their decomposition, was found by X-ray diffraction and electron microscopic analyses. The electrical conductivity of this composite, with an activation energy of 37 kJ/mol, is intermediate between two parent compounds and is dominantly p-type electronic as for Ca2Fe2O5-δ. Since the ion- and electron-conducting phases are well percolated in the composite ceramics, the oxygen permeation fluxes through CGCF5 are considerably higher than those of both constituents.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

286-292

Citation:

Online since:

April 2013

Export:

Price:

[1] M.-L. Fontaine, Y. Larring, T. Norby, T. Grande, R. Bredesen, Dense ceramic membranes based on ion conducting oxides, Ann. Chim. Sci. Mater. 32 (2007) 197-212.

DOI: 10.3166/acsm.32.197-212

Google Scholar

[2] S. Smart, C.X.C. Lin, L. Ding, K. Thambimuthu, J.C.D. da Costa, Ceramic membranes for gas processing in coal gasification, Energy Environ. Sci. 3 (2010) 268-278.

DOI: 10.1039/b924327e

Google Scholar

[3] E.V. Tsipis, V.V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem. 15 (2011) 1007-1040.

DOI: 10.1007/s10008-011-1341-8

Google Scholar

[4] J.E. ten Elshof, H.J.M. Bouwmeester, H. Verweij, Oxygen transport through La1-xSrxFeO3-δ membranes. II. Permeation in air/CO, CO2 gradients, Solid State Ionics 89 (1996) 81-92.

DOI: 10.1016/0167-2738(96)00255-x

Google Scholar

[5] T. Ramos, A. Atkinson, Oxygen diffusion and surface exchange in La1-xSrxFe0.8Cr0.2O3-δ (x = 0.2, 0.4 and 0.6), Solid State Ionics 170 (2004) 275-286.

DOI: 10.1016/j.ssi.2004.03.001

Google Scholar

[6] C.Y. Park, A.J. Jacobson, Electrical conductivity and oxygen nonstoichiometry of La0.2Sr0.8Fe0.55Ti0.45O3-δ, J. Electrochem. Soc. 152 (2005) J65-J73.

Google Scholar

[7] V.V. Kharton, A.L. Shaula, F.M.M. Snijkers, J.F.C. Cooymans, J.J. Luyten, A.A. Yaremchenko, A.A. Valente, E.V. Tsipis, J.R. Frade, F.M.B. Marques, J. Rocha, Processing, stability and oxygen permeability of Sr(Fe,Al)O3-based ceramic membranes, J. Membrane Sci. 252 (2005) 215-225.

DOI: 10.1016/j.memsci.2004.12.018

Google Scholar

[8] H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials, Solid State Ionics 52 (1992) 43-56.

DOI: 10.1016/0167-2738(92)90090-c

Google Scholar

[9] M. Schwartz, J.H. White, A.F. Sammels, US Patent 6,033,632. (2000)

Google Scholar

[10] I.A. Leonidov, V.L. Kozhevnikov, M.V. Patrakeev, E.B. Mitberg, K.R. Poeppelmeier, High-temperature electrical conductivity of Sr0.7La0.3FeO3-δ, Solid State Ionics 144 (2001) 361-369.

DOI: 10.1016/s0167-2738(01)00978-x

Google Scholar

[11] M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov, V.V. Kharton, Ion-electron transport in strontium ferrites: relationships with structural features and stability, Solid State Sci. 6 (2004) 907-913.

DOI: 10.1016/j.solidstatesciences.2004.05.002

Google Scholar

[12] A.L. Shaula, Y.V. Pivak, J.C. Waerenborgh, P. Gaszynski, A.A. Yaremchenko, V.V. Kharton, Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions, Solid State Ionics 177 (2006) 2923-2930.

DOI: 10.1016/j.ssi.2006.08.030

Google Scholar

[13] C.A.J. Fisher and M.S. Islam, Mixed ionic/electronic conductors Sr2Fe2O5 and Sr4Fe6O13: atomic-scale studies of defects and ion migration, J. Mater. Chem. 15 (2005) 3200-3207.

DOI: 10.1039/b418567f

Google Scholar

[14] P. Berastegui, S.-G. Eriksson, S. Hull, A neutron diffraction study of the temperature dependence of Ca2Fe2O5, Mater. Res. Bull. 34 (1999) 303-314.

DOI: 10.1016/s0025-5408(99)00007-0

Google Scholar

[15] T.S. Zhang, J. Ma, S.H. Chan, J.A. Kilner, Grain boundary conduction of Ce0.9Gd0.1O2-δ ceramics derived from oxalate coprecipitation: effects of Fe loading and sintering temperature, Solid State Ionics 176 (2005) 377-384.

DOI: 10.1016/j.ssi.2004.07.022

Google Scholar

[16] M.J. Verkerk, A.J.A. Winnubst, A.J. Burggraaf, Effect of impurities on sintering and conductivity of yttria-stabilized zirconia, J. Mater. Sci. 17 (1982) 3113-3122.

DOI: 10.1007/bf01203473

Google Scholar

[17] V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques, J.R. Frade, Ceria-based materials for solid oxide fuel cells, J. Mater. Sci. 36 (2001) 1105-1117.

DOI: 10.1023/a:1004817506146

Google Scholar

[18] J. D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids, J. Chem. Soc. Faraday Trans. 93 (1997) 629-637.

DOI: 10.1039/a606455h

Google Scholar

[19] B.G. Dick, A.W. Overhauser, Theory of the dielectric constants of alkali halide crystals, Phys. Rev. 112 (1958) 90-103.

DOI: 10.1103/physrev.112.90

Google Scholar

[20] N.F. Mott, M.J. Littleton, Conduction in polar crystals. I. Electrolytic conduction in solid salts, Trans. Faraday Soc. 34 (1938) 485-499.

DOI: 10.1039/tf9383400485

Google Scholar

[21] G.V. Lewis and C.R.A. Catlow, Potential models for ionic oxides, J. Phys. C: Solid State Phys. 18 (1985) 1149-1161.

DOI: 10.1088/0022-3719/18/6/010

Google Scholar

[22] M. Cherry, M.S. Islam, and C.R.A. Catlow, Oxygen ion migration in perovskite-type oxides, J. Solid State Chem. 118 (1995) 125-132.

DOI: 10.1006/jssc.1995.1320

Google Scholar

[23] W. Smith, T.R. Forester, I.T. Todorov, The DL_POLY_2.0 User Manual, Daresbury Laboratory, United Kingdom, 2009.

Google Scholar

[24] W. Smith and T.R. Forester, DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, J. Mol. Graphics 14 (1996) 136-141.

DOI: 10.1016/s0263-7855(96)00043-4

Google Scholar

[25] E.N. Naumovich, V.V. Kharton, Atomic-scale insight into the oxygen ionic transport mechanisms in La2NiO4-based materials, J. Mol. Structure: THEOCHEM 946 (2010) 57–64.

DOI: 10.1016/j.theochem.2009.12.003

Google Scholar

[26] C.R.A. Catlow, Point defect and electronic properties of uranium dioxide, Proc. R. Soc. A. 353 (1977) 533-561.

Google Scholar

[27] Information on http://www.ucl.ac.uk/klmc/Potentials/

Google Scholar

[28] B. Phillips, A. Muan, Phase equilibria in the system CaO - iron oxide in air and at 1 atm O2 pressure, J. Am. Ceram. Soc. 41 (1958) 445-454.

DOI: 10.1111/j.1151-2916.1958.tb12893.x

Google Scholar