Mechanical Spectroscopy of Silicon as a Low Loss Material for High Precision Mechanical and Optical Experiments

Article Preview

Abstract:

The paper summarises systematic studies of the mechanical loss of crystalline silicon at low temperatures from 300 to 5 K. Thermo-elastic loss is discussed as a main contribution in thin samples. A numerical method based on a finite element analysis is presented to determine the thermo-elastic loss of arbitrarily shaped samples. Additionally, mechanical loss associated with oxygen is investigated in Czochralski grown silicon bulk samples. The process has the activation energy of about 168 meV. An orientation dependency of the loss is observed. The lowest loss reported in this paper was achieved with a cylindrical bulk sample having a diameter of 110 mm and a length of 200 mm at around 5 K and a resonant frequency of about 22.3 kHz.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 184)

Pages:

443-448

Citation:

Online since:

January 2012

Export:

Price:

[1] H.B. Callen, T.A. Welton, Phys. Rev. 83 (1951) 34-40.

Google Scholar

[2] S. Seel, R. Storz, G. Ruoso, J. Mlynek, S. Schiller, Phys. Rev. Lett. 78 (1997) 4741-4744.

DOI: 10.1103/physrevlett.78.4741

Google Scholar

[3] M. Aspelmeyer, K. Schwab, New J. Phys. 10 (2008) 095001.

Google Scholar

[4] S. Rowan, J. Hough and D.R.M. Crooks, Phys. Lett. A 347 (2005) 25-32.

Google Scholar

[5] D.F. McGuigan, C.C. Lam, R.Q. Gram, A.W. Hoffman, D.H. Douglass, H.W. Gutche, J. Low Temp. Phys. 30 (1978) 621-629.

DOI: 10.1007/bf00116202

Google Scholar

[6] R. Nawrodt, A. Zimmer, S. Nietzsche, M. Thürk, W. Vodel, P. Seidel, Cryogenics 46 (2006) 718-723.

DOI: 10.1016/j.cryogenics.2006.06.001

Google Scholar

[7] C. Zener, Phys. Rev. 52 (1937) 230-235.

Google Scholar

[8] A.N. Norris, D.M. Photiadis, Q. J. Mech. Appl. Math. 58 (2005) 143-163.

Google Scholar

[9] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics. Elasticity Theory, Butterworth-Heinemann, (1970).

Google Scholar

[10] L. Landau, G. Rumer, Physik. Z. Sowjetunion 11 (1937) 18-25.

Google Scholar

[11] A. Akhiezer J. Phys. USSR 1 (1939) 277-287.

Google Scholar

[12] W.P. Mason, Physical Acoustics, Vol. 3, Academic Press, New York (1965).

Google Scholar

[13] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York (1972).

Google Scholar

[14] C.C. Lam, D.H. Douglas, J. Low Temp. Phys. 44 (1981) 259-264.

Google Scholar

[15] A. Borghesi, B. Pivac, A. Sassella, A. Stella, J. Appl. Phys. 77 (1995) 4169-4244.

DOI: 10.1063/1.359479

Google Scholar