Boron-Oxygen-Related Defect in Silicon

Article Preview

Abstract:

In silicon with high oxygen and boron content a new absorption band situated near 1026 cm-1 was found in Si after light illuminSuperscript textation with intensity of 70 mW/cm2. It was shown that both oxygen and boron are the component of the defect to which found band corresponds. It was revealed that defect occurs also during thermal treatments of silicon without illumination when a weak current was applied to the sample upon the treatment. The assumption was made that the formation of defect occurs both as result of direct interaction of components and through intermediate metastable states.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 178-179)

Pages:

178-182

Citation:

Online since:

August 2011

Export:

Price:

[1] K. Bothe, J. Schmidt, R. Hezel, Comprehensive analysis of the impact of boron and oxygen on the metastable defect in Cz silicon, Proc. 3rd World Conference Photovoltaic Solar Energy Conv., Osаka, Japan 2 (2003) 1077–1080.

Google Scholar

[2] K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon., J. Appl. Phys. 99 (2006) 013701(1)– 013701(11).

DOI: 10.1063/1.2140584

Google Scholar

[3] J. Schmidt, K. Bothe, Structure and transformation of the metastable boron- and oxygen-related defect center in crystaline silicon, Phys. Rev. B 69 (2004) 024107(1)– 024107(8).

DOI: 10.1103/physrevb.69.024107

Google Scholar

[4] J. Schmidt, K. Bothe, D. Macdonald, J. Adey, R. Jones, D. W. Palmer, Electronically stimulated degradation of silicon solar cells, Mater. Res. Soc. Symp. Proc. 864 (2005) E.6.1.1–E.6.1.12.

DOI: 10.1557/proc-864-e6.1

Google Scholar

[5] J. Schmidt, K. Bothe, R. Hezel, Formation and anihilation of the metastable defect in boron-doped Czochralski silicon, Proc. 29th IEEE Photovoltaic Spec. Conf., N. Y., (2002) 178–181.

DOI: 10.1109/pvsc.2002.1190485

Google Scholar

[6] J. Schmidt, A. Cuevas, Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon, J. Appl. Phys. 86 (1999) 3175–3180.

DOI: 10.1063/1.371186

Google Scholar

[7] B. Lim, K. Bothe, J. Schmidt, Deactivation of the boron-oxygen recombination center in silicon by illumination at elevated temperature, Phys. Stat. Sol. 2 (2008) 93–95.

DOI: 10.1002/pssr.200802009

Google Scholar

[8] S. Rein, S. W. Glunz, G. Willeke, Metastable defect in Cz-Si: electrical properties and quantitative correlation with different impurities, Proc. 3rd World Conf. Photovoltaic. Solar Energy Conv., Osаka, Japan 3 (2003) 2899–2904.

Google Scholar

[9] K. Bothe, R. Hezel, J. Schmidt, Recombination-enhanced formation of the metastable boron–oxygen complex in crystalline silicon, Appl. Phys. Lett. 83 (2003) 1125–1127.

DOI: 10.1063/1.1600837

Google Scholar

[10] S. P. Chappel, G. Davies, E. C. Lightowlers, R. C. Newman, A metastable precursor to the di-carbon centre in crystalline silicon, Mater. Sci. Forum. 38-41 (1989) 481–486.

DOI: 10.4028/www.scientific.net/msf.38-41.481

Google Scholar

[11] L. I. Khirunenko, M. G. Sosnin, Yu. V. Pomozov, L. I. Murin, V. P. Markevich, A. R. Peaker, L. M. Almeida, J. Coutinho, V. J. B. Torres, Formation of interstitial carbon–interstitial oxygen complexes in silicon: Local vibrational mode spectroscopy and density functional theory, Phys. Rev. B. 78 (2008)  155203(1)– 155203(8)

DOI: 10.1103/physrevb.78.155203

Google Scholar

[12] J. D. Weeks, J. C. Tully, L. C. Kimerling, Theory of recombination-enhanced defect reactions in semiconductors, Phys. Rev. B 12 (1975) 3286–3292.

DOI: 10.1103/physrevb.12.3286

Google Scholar