Sensing of Carbon Dioxide and Hydrocarbons Using Photonic Bandgap Fiber

Article Preview

Abstract:

The sensing setup for detection and measurement of carbon dioxide and methane was designed. Absorption spectra of many compounds indicate several weak peaks around 1400-1600 nm wavelength. Thus, tunable lasers with 20 micron core photonic bandgap fiber matching above wavelengths were chosen for the optical measurement system. Measurements were performed at low pressure to eliminate pressure broadening effect and to sharpen the absorption peaks. The angled cut was performed to improve signal to noise ratio.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 165)

Pages:

316-320

Citation:

Online since:

June 2010

Export:

Price:

[1] K. Grattan, T. Sun: Sensors Actuators A, Vol. 82 (2000), pp.40-61.

Google Scholar

[2] T. Ishihara , K. Kometani, Y. Mizuhara, Y. Takita Y: J. Electrochem. Soc., Vol. 139 (1992), pp.2881-2885.

Google Scholar

[3] R. Moos: J. Appl. Ceram. Technol., Vol. 2 (2005), pp.401-413.

Google Scholar

[4] J. Tamaki, M. Akiyama, C. Xu, N. Miura, N. Yamazoe: Chem. Lett., Vol. 19 (1990), pp.1243-1246.

Google Scholar

[5] A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, L. Gianfrani: Appl. Phys. B, Vol 78 (2004), pp.235-240.

Google Scholar

[6] P. Francis, M. Burton, C. Oppenheimer: Nature, Vol. 396 (1998), pp.567-570.

Google Scholar

[7] B. Culshaw: The Handbook of Optical Fibre Sensing Technology (New York, Wiley, 2002).

Google Scholar

[8] J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, E. Lewis: J. Opt. A: Pure Appl. Opt., Vol. 9 (2007), pp.87-91.

Google Scholar

[9] T. Sugiyama, M. Wada, S. Nakajima, T. Ueda: Proc. 4th Workshop on Adv. Photon Proces. and Meas. t Technol. (2001), pp.63-66.

Google Scholar

[10] R. Mihalcea, M. Webber, D. Baer, R. Hanson, G. Feller, W.B. Chapman: Appl. Phys. B, Vol. 67, (1998), pp.283-288.

Google Scholar

[11] I. Linnerud, P. Kaspersen, T. Jaeger: Appl. Phys. B, Vol. 67(1998) pp.297-305.

Google Scholar

[12] T. Sugiyama, T. Ueda: Proc. of Tech. Meeting on Sensors and Micromachines, CHS-03-56, (2003), pp.1-4.

Google Scholar

[13] R. Muda, G. Dooly, J. Clifford, J. Mulrooney, G. Flavia, E. Merlone-Borla, P. Chambers, C. Fitzpatrick, E. Lewis: J. Opt. A: Pure Appl. Opt., Vol. 11 (2009) p.054013 (7pages).

DOI: 10.1088/1464-4258/11/5/054013

Google Scholar

[14] J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, E. Lewis: Sensors and Actuators A, Vol. 136/1 (2007), pp.104-110.

Google Scholar

[15] E. Yablonovitch: Phys. Rev. Lett. Vol. 58, (1987), p.2059-(2062).

Google Scholar

[16] S. John: Phys. Rev. Lett., Vol. 58, (1987), pp.2486-2489.

Google Scholar

[17] J. Knight, T. Birks, P. Russel: Opt. Lett., Vol. 21 (1996), pp.1547-1549.

Google Scholar

[18] Y. Fink, D. Ripin, S. Fan, C. Chen, J. Joannopoulos, and E. Thomas: J. Lightwave Tech., Vol. 17, (1999), p.2039-(2041).

Google Scholar

[19] G. Pickrell, E. Smirnova: Proc. IEEE Sensors Conf., 2005, Irvine, California, 10. 1109/ICSENS. 2005. 1597801.

Google Scholar

[20] C. Cordeiro, M. Franco, G. Chesini, E. Barretto, R. Lwin, C. Cruz, M. Large: Opt. Express, Vol. 14/26, (2006), pp.13056-13066.

DOI: 10.1364/oe.14.013056

Google Scholar

[21] Y. Huang, Y. Xu, A. Yariv: Appl. Phys. Lett., Vol. 85/22, (2004), pp.5182-5184.

Google Scholar

[22] S. Kim, C. Young, J. Chan, C. Carter, B. Mizaikoff , S. Hartwig, A. Lambrecht: Proc. Sensors Atlanta (2007).

Google Scholar

[23] J. Pawłat, T. Matsuo, T. Sugiyama, T. Ueda: J. Adv. Oxid. Technol. , Vol. 9/2, (2006), p.150155.

Google Scholar

[24] J. Pawłat, T. Matsuo, T. Sugiyama, T. Ueda: Plasma Process. Polym., Vol. 4/7-8, (2007), p.743752.

Google Scholar

[25] T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen: Opt. Express, Vol. 12 (2004), pp.4080-4087.

DOI: 10.1364/opex.12.004080

Google Scholar

[26] M. Petrovich, A. VanBrakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, M. Watson, T. DelMonte, T. Monro, J. Dakin, D. Richardson: Proc. SPIE Opticals East, Boston, USA (2005), pp.15-29.

DOI: 10.1117/12.631617

Google Scholar

[27] L. Rothman, D. Jacquemart, A. Barbe, D. Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian, K. Chance, L. Coudert, V. Dana, V. Devi, J. Flaud, R. Gamache, A. Goldman, J. Hartmann, K. Jucks, A. Maki, J. Mandin, S. Massie, J. Orphal, A. Perrin, C. Rinsland, M. Smith, J. Tennyson, R. Tolchenov, R. Toth, J. Vander Auwera, P. Varanasi, G. Wagner: J. of Quant. Spectr. Rad. Trans. Vol. 96/2 (2005).

DOI: 10.1016/j.jqsrt.2004.10.008

Google Scholar

[28] PNNL, https: /secure2. pnl. gov/nsd/NSD. nsf/Listing?OpenView.

Google Scholar

[29] D. Iannuzzi, S. Man, C. Alberts, J. Berenschot, M. Elwenspoek, A. Said, M. Dugan: Proc. of SPIE, Vol. 7004 (2008), 7004-277.

Google Scholar

[30] Z. Huang: J. Microscopy, Vol. 215/3 (2004), pp.219-223.

Google Scholar