Molarity Relationship of Electrolyte Solution to Aluminum Anodizing Process on Morphology and Corrosion Resistance

Article Preview

Abstract:

One type of aluminum that has a widely use is AA 6061 because it has a good mechanical properties and corrosion resistance when compared to the other types of aluminum. Those properties of this alloy can be improved even better by using the anodizing process. In this study, the results of anodizing AA 6061 will be investigated using molarity of sulfuric acid 1, 2 and 3 M, with an anodizing processing time of 60 minutes and temperature of electrolyte solution 10°C towards morphology and corrosion rate. The cathode used in this process is titanium alloy. After the anodizing process was completed, a Scanning Electron Microscopy (SEM) test was carried out to examine the surface morphology produced, testing Energy Dispersive X-Ray (EDX) is used to determine the chemical composition of the anodic layer formed after the anodizing process and the test of corrosion rate is done using 128N Autolab PGSTAT Potentiodynamic in 3.5% sodium chloride. From the test results, it appears that there is an increase in pore size and corrosion rate along with an increase in the molarity of the electrolyte solution. In addition, there is also an increase in sulfate levels and a decrease in titanium deposits in anodizing results with higher solution molarity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] P.H. Setyarini, R. Soenoko, A. Suprapto, Y.S. Irawan, Properties of Electrochemical Impedance and Surface Characteristics of Anodized AA 6061, Int. Rev. Mech. Eng. 10 (2016) 186-190.

DOI: 10.15866/ireme.v10i3.8751

Google Scholar

[2] L.Zaraska, G.D. Sulka, M. Jaskula, Porous Anodic Alumina Membranes Formed by Anodization of AA1050 Alloy as Templates for Fabrication of Metallic Nanowire Arrays, Surf. Coat. Technol. 205 (2010) 2432–2437.

DOI: 10.1016/j.surfcoat.2010.09.038

Google Scholar

[3] P.H. Setyarini, R. Soenoko, A. Suprapto, Y.S. Irawan, Adhesion Phenomenon of Titanium as Cathode in Aluminum Anodizing, App. Mech. Mat. 799-800 (2015) 140-144.

DOI: 10.4028/www.scientific.net/amm.799-800.140

Google Scholar

[4] P.H. Setyarini, R. Soenoko, A. Suprapto, Y.S. Irawan, Purnomo, Corrosion Characterization Of Anodized AA 6061, MM Sci J. (2018) 2415-2420.

DOI: 10.17973/mmsj.2018_06_201803

Google Scholar

[5] N. Tsyntsaru, Aluminum Alloys Anodisation for Nanotemplates Application, Surf. Eng. App. Electrochemistry 52 (2016) 1-7.

DOI: 10.3103/s1068375516010142

Google Scholar

[6] Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, Z. Wang, W. Huang, Effect of Anodizing Parameters on Film Morphology and Corrosion Resistance of AA2099 Aluminum-Lithium Alloy, J. Electrochem. Soc. 163 (2016) C369-C376.

DOI: 10.1149/2.1081607jes

Google Scholar

[7] P. H. Setyarini, F. Gapsari, Purnomo, Study of Predicting. Corrosion On AA 6063-T5 Using EIS Method In Different Corrosion Media, Int. J. Mech. Eng. Tech. 9 (2018) 507–514.

Google Scholar

[8] G. E. J. Poinern, N. Ali, D. Fawcett, Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development, Materials, 4 (2011) 487-526.

DOI: 10.3390/ma4030487

Google Scholar

[9] Y. Zhao, M. Chen, Y. Zhang, T. Xu, W. Liu, A Facile Approach to Formation of Through-Hole Porous Anodic Aluminium Oxide Film. Mater. Lett.59 (2005) 40-43.

DOI: 10.1016/j.matlet.2004.09.018

Google Scholar

[10] W.M. De Azevedo, D.D. de Carvalho, H.J. Khoury, E.A. de Vasconcelos, E.F. Da Silva, Spectroscopic Characteristics of Doped Nanoporous Aluminium Oxide. Mater. Sci. Eng. B, 112 (2004) 171-174.

DOI: 10.1016/j.mseb.2004.05.039

Google Scholar

[11] A. Jagminience, G. Valincius, A. Riaukaite, A. Jagminas,. The Influence of the Alumina Barrier Layer Thickness on the Subsequent AC Growth of Copper Nano-Wires. J. Cryst. Growth Des. 274 (2005) 622-631.

DOI: 10.1016/j.jcrysgro.2004.10.021

Google Scholar

[12] S. Prasad, J. Quijano, Development of Nanostructured Biomedical Micro-Drug Testing Device Based on In Situ Cellular Activity Monitoring. Bioelectronics 7 (2006) 1219-1229.

DOI: 10.1016/j.bios.2005.05.005

Google Scholar

[13] G.C. Wood, P. Skeldon, G.E. Thompson, K. Shimizu,. A Model for the Incorporation of Electrolyte Species Into Anodic Alumina. J. Electrochem. Soc. 43 (1996) 74-83.

DOI: 10.1149/1.1836389

Google Scholar

[14] S.M. Moon, S.I Pyun. The Formation and Dissolution of Anodic Oxide Films on Pure Aluminum in Alkaline Solution. Electrochim. Acta 1999, 44, 2445-2454.

DOI: 10.1016/s0013-4686(98)00368-5

Google Scholar

[15] S. Ono, M. Saito, H. Asoh, Self Ordering of Anodic Porous Alumina Formed in Organic Acid Electrolytes. Electrochem. Solid-State Lett. 7 (2004) B21-B24.

DOI: 10.1149/1.1738553

Google Scholar

[16] H. Uchi, T. Kanno, R.S. Alwitt, Structural Features of Crystalline Anodic Alumina Films. J. Electron. Soc. Vol. 148 (2001) B17-B23.

DOI: 10.1149/1.1344528

Google Scholar

[17] A. M. Abd El-Hameed, Y. A. Abdel-Aziz, F. S. El-Tokhy, Anodic Coating Characteristics of Different Aluminum Alloys for Spacecraft Materials Applications, Mat. Sci. App., 8 (2017) 197-208.

DOI: 10.4236/msa.2017.82013

Google Scholar

[18] F. Keller, M.S. Hunter, D.L Robinson, Structural Features of Oxide Coatings on Aluminium. J. Electrochemical. Soc. 100 (1953) 411-419.

Google Scholar

[19] K. Matsumura, Y. Kagawa, Transparent Behavior of Aluminum Nanoparticle Compacts at Microwave Frequencies, AIP J. Phys. 103 (2008).

DOI: 10.1063/1.2902952

Google Scholar

[20] P.H. Setyarini, F. Gapsari, Purnomo, Growth of Anodic Aluminum Oxide Using Titanium as Cathode – A Review, MATEC Web of Conferences 204 (2018) 1-6.

DOI: 10.1051/matecconf/201820405019

Google Scholar