High Quality AlN Single Crystal Substrates for AlGaN-Based Devices

Article Preview

Abstract:

Aluminum nitride (AlN) single crystal boules were grown by physical vapor transport (PVT). Diameter expansion during boule growth, without the introduction of low angle grain boundaries (LAGB) around the boule periphery, was confirmed by crossed polarizer imaging, synchrotron white beam x-ray topography (SWBXT), and synchrotron monochromatic beam x-ray topography (SMBXT). The densities of basal plane dislocations (BPD) and threading edge dislocations (TED) averaged from high-magnification topographs of five regions of a high-quality substrate were 0 cm-2 and 992 cm-2, respectively. Substrates fabricated from AlN boules possessed excellent surface finishes suitable for epitaxy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

923-926

Citation:

Online since:

June 2018

Export:

Price:

* - Corresponding Author

[1] R. Dalmau, Z. Sitar, AlN bulk crystal growth by physical vapor transport, in: G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Eds.), Handbook of Crystal Growth, Springer, Berlin, 2010, pp.821-843.

DOI: 10.1007/978-3-540-74761-1_24

Google Scholar

[2] B. Raghothamachar, G. Dhanaraj, M. Dudley, X-ray topography techniques for defect characterization of crystals, in: G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Eds.), Handbook of Crystal Growth, Springer, Berlin, 2010, pp.1425-1451.

DOI: 10.1007/978-3-540-74761-1_42

Google Scholar

[3] R. Schlesser, R. Dalmau, Z. Sitar, J. Cryst. Growth 241 (2002) 416-420.

Google Scholar

[4] P. Lu, R. Collazo, R. F. Dalmau, G. Durkaya, N. Dietz, B. Raghothamachar, M. Dudley, Z. Sitar, J. Cryst. Growth 312 (2009) 58-63.

DOI: 10.1016/j.jcrysgro.2009.10.008

Google Scholar

[5] R. Dalmau, B. Moody, J. Xie, R. Collazo, Z. Sitar, Phys. Stat. Sol. A 208 (2011) 1545-1547.

Google Scholar

[6] B. Raghothamachar, R. Dalmau, B. Moody, S. Craft, R. Schlesser, J. Xie, R. Collazo, M. Dudley, Z. Sitar, Mater. Sci. Forum 717-720 (2012) 1287-1290.

DOI: 10.4028/www.scientific.net/msf.717-720.1287

Google Scholar

[7] B. Raghothamachar, Y. Yang, R. Dalmau, B. Moody, S. Craft, R. Schlesser, M. Dudley, Z. Sitar, Mater. Sci. Forum 740-742 (2013) 91-94.

DOI: 10.4028/www.scientific.net/msf.740-742.91

Google Scholar

[8] T. Zhou, B. Raghothamachar, F. Wu, R. Dalmau, B. Moody, S. Craft, R. Schlesser, M. Dudley, Z. Sitar, J. Electron. Mater. 43 (2014) 838-842.

DOI: 10.1007/s11664-013-2968-2

Google Scholar

[9] E. K. Sanchez, S. Ha, J. Grim, M. Skowronski, W. M. Vetter, M. Dudley, R. Bertke, W. C. Mitchel, J. Electrochem. Soc. 149 (2002) G131-G136.

DOI: 10.1149/1.1430416

Google Scholar

[10] M. Bobea, J. Tweedie, I. Bryan, Z. Bryan, A. Rice, R. Dalmau, J. Xie, R. Collzao, Z. Sitar, J. Appl. Phys. 113 (2013) 123508.

DOI: 10.1063/1.4798352

Google Scholar

[11] J. Huang, K. Xu, X. J. Gong, J. F. Wang, Y. M. Fang, J. Q. Liu, X. H. Zeng, G. Q. Ren, T. F. Zhou, H. Yang, Appl. Phys. Lett. 98 (2011) 221906.

Google Scholar

[12] R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, J. Electrochem Soc. 158 (2011) H530-H535.

DOI: 10.1149/1.3560527

Google Scholar